NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes

Aerial photo survey improves NOAA GLERL’s Lake Erie ice model

1 Comment

Understanding the duration, extent, and movement of Great Lakes ice is important for the Great Lakes maritime industry, public safety, and the recreational economy. Lake Erie is ice-prone, with maximum cover surpassing 80% many winters.

Multiple times a day, GLERL’s 3D ice model predicts ice thickness and concentration on the surface of Lake Erie. The output is available to the public, but the model is under development, meaning that modelers still have research to do to get it to better reflect reality.

As our scientists make adjustments to the model, they need to compare its output with actual conditions so they know that it’s getting more accurate. So, on January 13th of this year, they sent a plane with a photographer to fly the edge of the lake and take photos of the ice.

The map below shows the ice model output for that day, along with the plane’s flight path and the location of the 172 aerial photos that were captured.

NOAA GLERL Lake Erie ice model output with all aerial photo survey locations -- January 13, 2017. Credit NOAA GLERL/Kaye LaFond.

NOAA GLERL Lake Erie ice model output with all aerial photo survey locations — January 13, 2017. Map Credit NOAA GLERL/Kaye LaFond.

These photos provide a detailed look at the sometimes complex ice formations on the lake, and let our scientists know if there are places where the model is falling short.

Often, the model output can also be compared to images and surface temperature measurements taken from satellites. That information goes into the GLSEA product on our website (this is separate from the ice model). GLSEA is useful to check the ice model with. However, it’s important to get this extra information.

“These photographs not only enable us to visualize the ice field when satellite data is not available, but also allow us to recognize the spatial scale or limit below which the model has difficulty in simulating the ice structures.” says Eric Anderson, an oceanographer at GLERL and one of the modelers.

 “This is particularly evident near the Canadian coastline just east of the Detroit River mouth, where shoreline ice and detached ice floes just beyond the shoreline are not captured by the model. These floes are not only often at a smaller spatial scale than the model grid, but also the fine scale mechanical processes that affect ice concentration and thickness in this region are not accurately represented by the model physics.”

Click through the images below to see how select photos compared to the model output. To see all 172 photos, check out our album on Flickr. The photos were taken by Zachary Haslick of Aerial Associates.

This gallery contains 10 photos


1 Comment

Ice cover on the Great Lakes

The USCGC Mackinaw arrives in Duluth via Lake Superior. March 24, 2014

U.S. Coast Guard Cutter Mackinaw is an icebreaking vessel on the Great Lakes that assists in keeping channels and harbors open to navigation. Here, the USCGC Mackinaw arrives in Duluth via Lake Superior on March 24, 2014. Credit: NOAA
Ice formation on the Great Lakes is a clear sign of winter!

Looking back in time, the lakes were formed over several thousands of years as mile-thick layers of glacial ice advanced and retreated, scouring and sculpting the basin. The shape and drainage patterns of the basin were constantly changing from the ebb and flow of glacial meltwater and the rebound of the underlying land as the massive ice sheets retreated.

The amount and duration of ice cover varies widely from year to year. As part of our research, GLERL scientists are observing longterm changes in ice cover as a result of global warming. Studying, monitoring, and predicting ice coverage on the Great Lakes plays an important role in determining climate patterns, lake water levels, water movement patterns, water temperature, and spring algal blooms.

Doing research to improve forecasts is important for a variety of reasons.

Ice provides us a connection to the past and also serves as a measure of the harshness of current day winter weather. Understanding the major effect of ice on the Great Lakes is very important because ice cover impacts a range of benefits provided by the lakes—from hydropower generation to commercial shipping to the fishing industry. The ability to forecast and predict ice cover is also really important for recreational safety and rescue efforts, as well as for navigation, weather forecasting, adapting to lake level changes, and all sorts of ecosystem research. One great example of the importance of forecasting is illustrated by an incident that occurred in Lake Erie on a warm sunny day in February 2009 when a large ice floe broke away from the shoreline. The floating ice block stranded 134 anglers about 1,000 yards offshore and also resulted in the death of one man who fell into the water. While the ice on the western sections of the lake was nearly 2 feet thick, rising temperatures caused the ice to break up, and southerly wind gusts of 35 mph pushed the ice off shore. Having the ability to forecast how much ice cover there will be, where it may move, and what other factors like temperature, waves, or wind might play a role in what the ice is going to do, is incredibly important to a lot of users.

— GLERL’s 2017 Seasonal Ice Cover Projection for the Great Lakes —

GLERL’s ice climatologist, Jia Wang, along with partners from the Cooperative Institute for Limnology and Ecosystems Research, use two different methods to predict seasonal ice cover for the Great Lakes. One, a statistical regression model, uses mathematical relationships developed from historical observations to predict seasonal ice cover maximum based on the status of several global air masses that influence basin weather. This method forecasts that the maximum ice cover extent over the entire Great Lakes basin, will be 64%. The other forecast method, a 3-dimensional mechanistic model, is based on the laws of physics that govern atmospheric and hydrodynamic (how water moves) processes to predict ice growth in response to forecast weather conditions. This method predicts a maximum ice cover of 44% for the basin this year.

As you can see, the two methods have produced different answers. However, if you look at the last chart here, you’ll see that three of the lakes show good agreement between these two model types–Lakes Michigan, Erie, and Ontario. Continued research, along with the historical data we’ve been monitoring and documenting for over 40 years, will help GLERL scientists improve ice forecasts and, ultimately, improve our ability to adapt and remain resilient through change.


More information!

Below, is the most recent Great Lakes Surface Environmental Analysis (GLSEA) analysis of the Great Lakes Total Ice Cover. GLSEA is a digital map of the Great Lakes surface water temperature (see color bar on left) and ice cover (see grayscale bar on right), which is produced daily at GLERL by Great Lakes CoastWatch. It combines lake surface temperatures that are developed from satellite images and ice cover information provided by the National Ice Center (NIC). This image is the analysis of January 10, 2017 (13%). For the most current analysis, visit https://coastwatch.glerl.noaa.gov/glsea/cur/glsea_cur.png.

GLSEA total ice cover analysis for January 10, 2017

For technical information on GLERL’s ice forecasting program, check out our website here. 

You can also find much of the information in this post, and more, on this downloadable .pdf of the GLERL fact sheet on Great Lakes ice cover.

Want to see a really cool graphic showing the extent of the maximum ice cover on the Great Lakes for each year since 1973? You’ll find that here.


Great Lakes ice cover facts since 1973

94.7% ice coverage in 1979 is the maximum on record.

9.5% ice coverage in 2002 is the lowest on record.

11.5% ice coverage in 1998, a strong El Niño year.

The extreme ice cover in 2014 (92.5%) and 2015 (88.8%) were the first consecutive high ice cover years since the late 1970’s.

14066190766_c1623828fb_o
On March 6, 2014, Great Lakes ice cover was 92.5%, putting winter 2014 into 2nd place in the record books for maximum ice cover. Satellite photo credit: NOAA Great Lakes CoastWatch and NASA.


1 Comment

Tracking Changes in Great Lakes Temperature and Ice: New Approaches

In a new study, scientists from GLERL, the University of Michigan, and other institutions take a new look at changing ice cover and surface water temperature in the Great Lakes. The paper, set to be published in Climatic Change, is novel in two ways.

While previous research focused on changes in ice cover and temperature for each lake as a whole, this study reveals how different regions of the lakes are changing at different rates.

While many scientists agree that, over the long term, climate change will reduce ice cover in the Great Lakes, this paper shows that changes in ice cover since the 1970s may have been dominated by an abrupt decline in the late 1990s (coinciding with the strong 1997-1998 winter El Niño), rather than gradually declining over the whole period.

NOAA tracks ice cover and water surface temperature of the Great Lakes at a pretty fine spatial scale. Visit our CoastWatch site and you’ll see detailed maps of surface temperature and/or ice cover updated daily.

However, when studying long-term changes in temperature and ice cover on the lakes, the scientific community has used, in the past, either lakewide average temperature data or data from just a few buoys. We knew how each lake was changing overall, but not much more.

Now, for the first time, researchers are using our detailed data to look at the changes happening in different parts of each lake.

Using GIS (geographic information system) analysis tools, researchers calculated how fast ice cover and temperature were changing on average for each of thousands of small, square areas of the lakes (1.3 km2 for ice cover, and 1.8 km2 for temperature).

The maps below show the results. Changes in ice, on the left, are reported in the number of days of ice cover lost each year. Temperature changes are reported in degrees Celsius gained per year.

Fig3top

Panel a shows the change in seasonal ice cover duration (d/yr) from 1973 to 2013, and panel b shows the change in summer surface water temperature (°C/yr) from 1994 to 2013. Maps from Mason, L.A., Riseng, C.M., Gronewold, A.D. et al. Climatic Change (2016). doi:10.1007/s10584-016-1721-2. Click image to enlarge.

The researchers also averaged these values across major subbasins of the lakes. Maps of those results are below. The color coding is the same, and again, ice cover is on the left while temperature is on the right.

Note: These subbasins aren’t random, and were outlined by scientists as a part of the Great Lakes Aquatic Habitat Framework (GLAHF), which is meeting a need (among other things) for lake study at intermediate spatial scales.

The panel on the left shows the change in seasonal ice cover duration (d/yr) from 1973 to 2013, and the panel on the right shows the change in summer surface water temperature (°C/yr) from 1994 to 2013. Maps created by Kaye LaFond for NOAA GLERL. Click image to enlarge.

Depth, prevailing winds, and currents all play a role in why some parts of the lakes are warming faster than others. A lot of information is lost if each lake is treated as a homogenous unit. With so much variation, it may not make sense for every region of the Great Lakes to use lakewide averages. Studying changes at a smaller scale could yield more useful information for local and regional decision makers.

The second part of the story has to do with how ice cover has changed in the lakes. Previous studies typically represent changes in ice cover as a long, slow decline from 1973 until today (that would be called a ‘linear trend’). However, when looking at the data more carefully, it seems the differences between the 70’s and today in many regions of the Great Lakes are better explained by a sudden jump (called a ‘change point’).

The figure below shows yearly data on ice cover for the central Lake Superior basin. It is overlaid with a linear trendline (the long, slow decline approach) as well as two flat lines, which represent the averages of the data before and after a certain point, the ‘change point’.

Annual ice cover duration (d/yr) for the central Lake Superior basin, overlaid on the left with a linear trend-line, and overlaid on the right with a change-point analysis. Graphic created by Kaye LaFond for NOAA GLERL. Click image to enlarge.

Statistical analyses show that the change point approach is much better fit for most subbasins of the Great Lakes. 

So what caused this sudden jump? Scientists aren’t sure, but the change points of the northernmost basins line up with the year 1998, which was a year with a very strong winter El Niño. This implies that changes in ice cover are due, at least in part, to the cyclical influence of the El Niño Southern Oscillation (ENSO).

All of this by no means implies that climate change didn’t have a hand in the overall decline, or that when there is a cyclical shift back upwards (this may have already happened in 2014) that pre-1998 ice cover conditions will be restored. The scientific consensus is that climate change is happening, and that it isn’t good for ice cover.

This research just asserts that within the larger and longer-term context of climate change, we need to recognize the smaller and shorter-term cycles that are likely to occur.