NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


1 Comment

Lessons from Lake Huron: A look back at NOAA GLERL’s 2022 fieldwork for the Cooperative Science and Monitoring Initiative

Every summer, NOAA GLERL scientists travel far and wide across the Great Lakes region to study the biological, chemical, and physical properties of these amazing lakes. A portion of this fieldwork contributes to a larger project called the Cooperative Science and Monitoring Initiative – or CSMI – which helps us take a deeper dive into studying a different Great Lake each year. Instituted under the 2012 Great Lakes Water Quality Agreement, CSMI is a multi-agency, international effort to coordinate science and monitoring activities in one of the five Great Lakes each year to generate data and information for environmental management agencies.

MODIS satellite image of Lake Huron on May 18, 2021. Credit: NOAA Great Lakes CoastWatch Node.

Each Great Lake gets a “CSMI year” once every five years, and 2022 was Lake Huron’s turn to shine. Sitting right at the center of the Great Lakes region, Lake Huron is shared by the state of Michigan and the Canadian province of Ontario. It’s the second largest of the Great Lakes and ranks as the fourth largest lake in the world by surface area. Lake Huron provides economically and culturally important services, including a productive fishery, a source of clean drinking water, and natural beauty that supports a significant tourism industry. It’s also home to Thunder Bay National Marine Sanctuary, the first ever NOAA National Marine Sanctuary to be established in the Great Lakes.

GLERL’s fieldwork for this year’s Lake Huron CSMI efforts focused on benthic and spatial surveys in Thunder Bay and Saginaw Bay. Here’s a look back at some of the highlights!

GLERL scientists Ashley Elgin and Rachel Orzechowski rinse down sediments collected by a Ponar grab.

NOAA GLERL has been conducting benthic (lake bottom) research in the Great Lakes since 1980, during which time we have built an unparalleled record of the arrival and expansion of invasive zebra and quagga mussels. CSMI provides the perfect opportunity to expand on this knowledge. Surveying the lake bottom allows us to track the population dynamics of these mussels, follow their impacts on native species, and also monitor for any new invasive benthic species. 
GLERL scientist Paul Glyshaw collects Ponar samples onboard the Fisheries and Oceans Canada/Canadian Coast Guard vessel Limnos for mussel length-weight analysis.

In June, July, and August of this year, GLERL conducted surveys that will allow us to update the status of invasive dreissenid mussels and other benthos of Lake Huron. As an exciting bonus, our benthic surveys in Saginaw Bay and Thunder Bay even received dive support from Thunder Bay NMS to supplement the samples collected with Ponar grabs.

Thunder Bay NMS divers Stephanie Gandulla and John Bright support GLERL’s benthic survey on board the R/V 5503.
The large metal claw used for a Ponar grab is no match for a mussel-covered rock like this, which is why we need NOAA’s Thunder Bay NMS Divers to support the benthic survey.

In the truly collaborative fashion that CSMI is known for, GLERL scientists maximized time on these cruises by collecting samples for several federal and university collaborators in addition to conducting our mussel survey.  For example, mussels and sediments went to the U.S. Geological Survey for mercury analysis, and researchers from the University of Michigan will be looking for mussel environmental DNA in water samples.

This sediment sample from Saginaw Bay has many benthic inverts present, including dreissenid mussels, chironomids, water mites, amphipods, and a snail. 
Paul Glyshaw collects and filters Lake Huron water onboard the Fisheries and Oceans Canada/Canadian Coast Guard vessel Limnos to measure carbon content. This helps us address potential impacts of climate change on the lake, including acidification, changes to production, and altered biogeochemical processes.

Plus, GLERL also teamed up with the U.S. Environmental Protection Agency, Fisheries and Oceans Canada (DFO), and the Canadian Coast Guard in a whole lake-benthic survey, during which GLERL assessed mussel body condition, mussel reproduction, inorganic carbon measures, and collected water for eDNA across the lake. In true CSMI spirit, DFO stepped up and supported the benthic survey when the EPA R/V Lake Guardian became unavailable. 

Fisheries and Oceans Canada/Canadian Coast Guard vessel Limnos pulls into Port Huron for the Lake Huron Benthic survey.

In addition to surveying what’s happening on the lake floor, GLERL also conducted an intensive spatial survey through CSMI to study Lake Huron’s food web in the area between Thunder Bay and Saginaw Bay. With a special focus on studying the interactions between larval fish and plankton, one of the key instruments used was GLERL’s Plankton Survey System (PSS). This high-tech piece of equipment is a towed multi-sensor platform capable of measuring turbidity, chlorophyll a, photosynthetically active radiation (PAR), conductivity, temperature, and zooplankton spatial distributions.

GLERL scientists use the PSS on Lake Michigan in the mid 2000s.

The plots below show a nearshore to offshore view of Lake Huron’s biological data measured by the PSS, like water temperature, dissolved oxygen, and chlorophyll, and plankton distribution. Check out more PSS plots from this spatial survey here.

While the PSS instrument was collecting data below the waves, lots of mayflies were catching a ride on this research cruise!

Now that the fieldwork is complete, the next step for GLERL’s CSMI work is to process our samples and analyze our data to continue building our knowledge of Lake Huron. Stay tuned in 2023, when CSMI heads east to study Lake Ontario!

For more CSMI information, data, and findings, visit greatlakescsmi.org. Plus, check out this related CSMI project in which GLERL and CIGLR developed an Experimental Biophysical Modeling Forecast System for Lakes Michigan and Huron.


1 Comment

NOAA Wave Glider Camaro Gathers Key Data During 25-Day Cruise in Lake Superior


The NOAA Great Lakes Environmental Research Laboratory (GLERL) and Michigan Technological University (MTU) Great Lakes Research Center recently teamed up on the deployment of a wave glider in Lake Superior. The chemical and biological data collected will help researchers understand more about the Lake Superior foodweb and also be used to validate satellite information.

Autonomous wave glider that was recently deployed into Lake Superior by the MTU Great Lakes Research Center. Credit: Sarah Atkinson/Michigan Tech

Information gathered by autonomous vehicles, such as the wave glider, helps fine-tune satellite algorithms (instructions that tell a satellite how to interpret what it’s seeing). Satellites are a great tool for observing the lakes, as they provide a broader view than that from the ground. Researchers create Great Lakes-specific algorithms because those used in the ocean often do not work well in the lakes. The data collected by the wave glider will help validate the algorithms and allow researchers to understand more about the lakes, such as primary productivity (See MTU’s blog post for more.)

A team of researchers from MTU deployed the wave glider on August 30, 2021 and it spent 25 days surveying the lake and collecting data. The plan is to make the data public through the National Centers for Environmental Information (NCEI) so that information can be used in many ways including model development.

Path of the wave glider deployed on August 30th, 2021 and recovered on September 22, 2021 off the eastern coast of the Keweenaw Peninsula, near Bete Grise.

“It is a privilege for the Great Lakes Research Center to collaborate with NOAA GLERL on the wave glider experiment in Lake Superior, a first of its kind,” said Andrew Barnard, director of Michigan Tech’s Great Lakes Research Center. “This project continues to build a strong partnership between our organizations to push the boundaries of autonomy and sensing technologies. These new technologies in the Great Lakes support a better understanding of the physical processes in the lakes and will directly result in improved management insight for policy makers.”

Steve Ruberg of NOAA GLERL is thrilled with the MTU partnership as it expands our ability to collect data throughout the lakes. “Uncrewed vehicles give us the persistent large spatial observational capability to get in situ observations that will allow us to validate Great Lakes remote sensing.”

Left to right: Michigan Tech R/V Agassiz Jamey Anderson, assistant director of marine operations, Michigan Tech Great Lakes Research Center; Tim Havens, incoming director of the Great Lakes Research Center (January 2022) and John Lenters, associate research scientist at the Great Lakes Research Center ready the wave glider for deployment. Credit: Sarah Atkinson/Michigan Tech

This research project is a part of the Environmental Protection Agency’s Cooperative Science and Monitoring Initiative (CSMI). Federal and state agencies, tribal groups, non-governmental organizations and academic researchers from the United States and Canada team up yearly to assess conditions in one of the five Great Lakes. The survey focuses on a series of research areas that are tailored to the unique challenges and data needs associated with each lake.


1 Comment

New wave buoy will provide data to support wave and flood forecasting on Lake Champlain

The NOAA Great Lakes Environmental Research Laboratory (GLERL) and partners recently deployed a buoy in Lake Champlain that will measure the lake’s wave heights to assess the accuracy of a new experimental model for the lake. This is part of a five-year NOAA GLERL project that will improve public safety on Lake Champlain by contributing to flood preparedness and response around the shores of the lake. Wave conditions are critical to public safety both for recreational and commercial activities on the lake – such as for boats, harbors, and beaches – but also for predicting coastal flood impacts at the shoreline where waves can run up and significantly impact infrastructure.

Left: Newly deployed NOAA buoy in Lake Champlain. Credit: University of Vermont FEMC staff. Top right: NOAA GLERL partners at the University of Vermont’s Forest Ecosystem Monitoring Cooperative (FEMC) deployed the buoy on Lake Champlain in May 2021. Credit: University of Vermont FEMC staff. Bottom right: Sunset on Lake Champlain. Credit: Dan Titze, CIGLR.

The project is a major collaborative effort by bi-national, federal, and university partners of NOAA GLERL. Partners at the University of Vermont’s Forest Ecosystem Monitoring Cooperative (FEMC) deployed the seasonal buoy in May, and the Coastal Data Information Program (CDIP) at the University of San Diego Scripps Institute of Oceanography receives the data, manages its quality control, and posts it to NOAA’s National Data Buoy Center (NDBC) website. Researchers at the Cooperative Institute for Great Lakes Research (CIGLR) are currently leading the development of a wave model for Lake Champlain, which is providing experimental forecasts on the GLERL website.

The buoy is located in the middle of the lake near Schuyler Reef, where it will remain until late fall, and is collecting wave height observations that will be used to validate NOAA’s WAVEWATCH III model for Lake Champlain. The experimental model’s output data will be compared to the buoy’s observed data, which will help scientists assess how well the model performs.

Location of the new NOAA Lake Champlain wave buoy, depicted by a yellow diamond. Map credit: NOAA National Data Buoy Center.

The buoy’s environmental data can be found on the CDIP website, and on the buoy’s page on the NOAA NDBC website. The buoy and the experimental wave model will be a helpful new tool for the region’s National Weather Service Weather Forecast Office in Burlington, Vermont, which provides lake forecasts including wave data to mariners in the region.

In addition to regional weather forecasters and local mariners, this buoy’s data will also be useful to emergency managers in the counties and cities around Lake Champlain and the Richelieu River, as well as the NOAA National Centers for Environmental Prediction which will transition the WAVEWATCH III model to operations.

This project is funded by the International Joint Commission’s Lake Champlain-Richelieu River (LCRR) Study Board. The International Joint Commission (IJC) is a bi-national organization established by the governments of the United States and Canada under the Boundary Waters Treaty of 1909. It oversees activities affecting the extensive waters and waterways along the Canada–United States border. The IJC’s LCRR Study Board was created in 2016 to undertake a study of the causes, impacts, risks, and potential solutions to flooding in the LCRR basin.


Leave a comment

The HAB season is over, but the work goes on

It’s nearly winter here in the Great Lakes—our buoys are in the warehouse, our boats are making their way onto dry land, and folks in the lab are working hard to assess observed data, experiments, and other results from this field season.

habtracker2018

This is a retrospective animation showing the predicted surface chlorophyll concentrations estimated by the Experimental Lake Erie HAB Tracker model during the 2018 season. Surface chlorophyll concentrations are an indicator of the likely presence of HABs. For more information about how the HAB Tracker forecast model is produced and can be interpreted, visit our About the HAB Tracker webpage.

The harmful algal bloom (HAB) season is also long over in the region. The final Lake Erie HAB Bulletin was sent out on Oct. 11, as the Microcystis had declined in satellite imagery and toxins decreased to low detection limits in samples. In the seasonal assessment, sent out by NOAA’s Centers for Coastal Ocean Science on Oct. 26, it was determined that the season saw a relatively mild bloom—despite its early arrival in the lake—and the bloom’s severity was significantly less than that which was predicted earlier in the season. These bulletins and outlooks are compiled using several models. Over the winter, the teams working on the models take what they learn from the previous season, and update their models for future use.

Back in the lab, the HABs team—researchers from both GLERL and the Cooperative Institute for Great Lakes Research (CIGLR)—will spend the winter analyzing data they collected through a variety of observing systems. This summer was packed with the use of new observing technologies, like hyperspectral cameras and the Environmental Sample Processor (in case you missed it, check out this fun photo story of the experimental deployment of a 3rd generation ESP). In addition, GLERL and CIGLR staff maintained a weekly sampling program program, from which scientists are analyzing and archiving samples and conducting experiments.

43447135081_b893240224_o.jpg

Aerial photograph of the harmful algal bloom in Western Basin of Lake Erie on July 2, 2018, (Photo Credit: Aerial Associates Photography, Inc. by Zachary Haslick). Pilots from Aerodata have been flying over Lake Erie this summer to map out the general scope of the algal blooms. In addition to these amazing photos, during the flyovers, additional images are taken by a hyperspectral imager (mounted on the back of the aircraft) to improve our understanding of how to map and detect HABs. The lead researcher for this project is Dr. Andrea VanderWoude, a NOAA contractor and remote sensing specialist with Cherokee Nation Businesses. For more images, check out our album on Flickr.

This lab work is super important for understanding the drivers of toxic algae in the Great Lakes. For instance, in a new study released this month, researchers looking at samples from previous years found that “ . . . the initial buildup of blooms can happen at a much higher rate and over a larger spatial extent than would otherwise be possible, due to the broad presence of viable cells in sediments throughout the lake,” according to the lead author Christine Kitchens, a research technician at CIGLR, who works here in the GLERL lab. This type of new information can be incorporated into the models used to make the annual bloom forecasts.

As you can see, our work doesn’t end when the field season is over.  In spring 2019, when the boats and buoys are back in the water and samples are being drawn from the lakes, researchers will already have a jump on their work, having spent the winter months analyzing previous years, preparing, and applying what they’ve learned to the latest version of the Experimental HAB Tracker, advanced observing technologies, and cutting-edge research on harmful algal blooms in the Great Lakes.


1 Comment

Photo story: Using an AUV to track algae in Lake Erie

In late July and early September, during the peak of the 2018 harmful algal bloom in the Western Basin of Lake Erie, NOAA GLERL, NOAA National Centers for Coastal Ocean Science (NCCOS), NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) and CIGLR researchers teamed up with a group of scientists and engineers from the Monterey Bay Research Institute (MBARI). Their mission: to test how well a third-generation environmental sample processor (3GESP), mounted inside a long-range autonomous underwater vehicle (LRAUV), can track and analyze toxic algae in the Western Basin of Lake Erie. You can read more about the purpose of this project in this great news story by MBARI’s Kim Fulton-Bennett.

Below is a photo story showing all (well, much) of the hard work that went into this test deployment.

First, the new gear had to be shipped from California to the GLERL laboratory in Ann Arbor, Michigan.

 

ESP3-b (1)

Upon arrival, Jim Birch, Director of the MBARI SURF (Sensors Underwater Research of the Future) Center, & Bill Ussler, MBARI biogeochemist, got straight to work in GLERL’s Marine Instrumentation Lab.

Image from iOS (6)

The inside of the 3G ESP has a lot of moving parts. Since this is the first time the team is testing it in freshwater, before it can go out, everything needs to be fine-tuned to work in a variety of conditions in Lake Erie (more on that later.)

So. Many. Moving. Parts.

 

Image from iOS (7)

Once everything is in working order, the 3GESP gets inserted into an LRAUV or long-range autonomous underwater vehicle (the torpedo-looking thing). This gives the 3GESP the ability to move around in the water all by itself once researchers have set parameters for it. The team has named this particular vehicle, Makai, which is Hawaiian for “toward or by the sea.” Seems appropriate! That’s Brian Kieft, MBARI software engineer, on the right. He plays a crucial role in making sure Makai does her job.

IMG-1263

All hands on deck for a few more tweaks.

testing_b

Once everything is installed tightly, helium is added into the canister to check for leaks. CIGLR engineer, Russ Miller, is working with Jim to fill it up.

Now, the team is ready to head out to Lake Erie. Here’s where things start to get exciting!

 

20180822_134836.jpg

Before the team sets Makai free to track the algal bloom in the Western Basin of Lake Erie, they must first check her ballast and trim. This is especially important for such a shallow lake (relative to where the team has been testing this technology in the deep canyons of of Monterey Bay off the coast of California.)

20180822_133254

Brian has to do all of the hard work.

Image from iOS (8)

Because, science.

Image from iOS (11)

Time to load Makai onto the NOAA vessel, which is stationed in La Salle, Michigan. Captain Kent Baker, a contractor with NOAA, is in the background operating the crane. Kent takes NOAA and CIGLR researchers and technicians out to bi-weekly sampling stations, helps deploy buoys and other instrumentation, and is at the ready for pretty much anything that needs to happen in Lake Erie.

onboat

Once she’s all settled onto the boat, the team takes Makai to the first deployment location.

Screen Shot 2018-08-23 at 12.55.24 PM

The inaugural deployment was set to match up with the bi-weekly sampling stations.

inwater

Look closely and you’ll see Makai off on her way!

Makai and the team spent nearly two weeks tracking, sampling, adjusting, and learning about using this technology to track algal toxins in Lake Erie.

Image from iOS (1) copy

The team used the images from GLERL’s Experimental Lake Erie Harmful Algal Bloom (HAB) Tracker to determine where to send Makai.

Bloom Edge

Then, they would determine how many samples to take, and program her to go to specific waypoints.

Remember when we said this Lake Erie mission will be different than the ones the team has performed in Monterey Bay? Well, here’s one example of how.

20180826_132023

After a few hours of no communication, and a little hunting, this is how the team found Makai. Two problems here: One, with the propellor up and the nose down, Makai cannot transmit data, including her location, as the transmitter only works above water. And, two, well . . .

OLYMPUS DIGITAL CAMERA

The reason she was nose down in the first place is because Lake Erie is pretty shallow, and she’d taken on quite a bit of mud.

20180830_172121

Once she was all cleaned up, the team set Makai out again to complete the rest of her mission.

Once the deployment was over, the research didn’t stop there.

archive_full-liquid

Archive samples were taken so that folks back in the lab could further analyze them.

bps2

Here’s GLERL’s Observing Systems and Advanced Technology (OSAT) branch chief, Steve Ruberg (left), along with Paul Den Uyl, a researcher with CIGLR, helping Bill extract the sample filters from the cartridges.

Deunyl

The filters are being collected for analysis of DNA. The DNA will be extracted from each filter and analyzed. We’re looking at absolute quantity of known microcystin producing toxin genes in samples collected, information on bacterial community composition, and information on eukaryotic organism community composition. The samples will also analyzed through shotgun sequencing. This is where all of the genes in the sample are turned into human readable information and can be combined to make what can be thought of as an organism’s genetic instruction guide (what genes it has). This information will be very helpful in better understanding what causes the algae to be toxic (not all algae is toxic).

 


Leave a comment

Andrea VanderWoude blends science and art to study the Great Lakes from the sky

A woman sits in a small airplane with headphones and a mic on, looking out the window at a bay on Lake Michigan Below.

Andrea VanderWoude on a flight over Grand Traverse Bay.

Andrea VanderWoude is a remote sensing specialist — that means she’s looking at things from far away. Whether she’s studying harmful algal blooms or rip currents, her job is to pull information out of pictures taken from airplanes or satellites. What makes her extra good at it? She’s got an artistic streak! Read on to learn more. 

How would you describe your job?

As a remote sensor, I use satellites and airborne cameras to monitor the Great Lakes – specifically harmful algal blooms, rip currents and submerged aquatic vegetation. I am an oceanographer working on the Great Lakes and most people wonder how that is possible. The lakes are so large they behave similarly to the ocean. I coordinate flights out of the Ann Arbor, Michigan airport with a contracted pilot that we work with and we put a small hyperspectral camera in the back of the airplane to take photos of the lakes.

Hyperspectral means that there are many discrete [color] bands or channels that are used (these colors are more detailed than the human eye can see). These channels can be used to map harmful algal blooms, which absorb, scatter and reflect light in a specific way. The hyperspectral camera is also able to fly underneath the clouds where passive sensors on satellites are unable to see. My day is spent programming, writing algorithms to process the images and looking at beautiful imagery. It is a wonderful blend of science and art!

What is the most interesting thing you’ve accomplished in your job?

Every year we fly over the Sleeping Bear Dunes National Lakeshore to monitor submerged aquatic vegetation and specifically for cladophora. As a northern Michigander growing up in that area, it is always amazing to see that area from the sky and to dream about hiking the Manitou Islands again. I also enjoy contributing to aiding the mapping of submerged aquatic vegetation in an area that is personally important to me.

What do you feel is the most significant challenge in your field today?

The most significant challenge I think is keeping up with the changing technology at the speed it is developing at this time. We are working on getting our new hyperspectral camera on an unmanned aerial system (UAS) for rapid response and I am really interested in using UAS’s for frequent monitoring of rip current troughs in the Great Lakes.

Where do you find inspiration? Where do your ideas come from in your research or other endeavors in your job?

I found my inspiration from growing up on the lakes and my parents always made a point of being on the water during all times of the year, either on Lake Michigan or Lake Superior. I have always felt connected to the water and jump in the lake during every month of the year, as a surfer on the Great Lakes. My ideas come from the public and what public needs could be supported. While living on the west side of Michigan, I have really seen the effect of rip currents and was recently stuck in one myself. It was a scary event and even furthered my desire to help warning and detection of rip currents.

How would you advise young women interested in science as a career path, or someone interested in your particular field?

I would advise women to get outside. When asked this question, people frequently turn towards an answer that involves STEM involvement but for me, and I think this also rings true for my Michigan Tech cohorts from undergrad, it was getting outside and learning about the natural world that sparked my interest in science. I was allowed to watch a limited amount of television as a kid and my mom would send me outside to play in the woods. I would spend my time creating forts around trees in the woods or we would go to the lake to swim for hours. This love of the outdoors continued through my undergraduate and graduate degrees with a curiosity to learn how the earth was formed, different rock types or how ocean dynamics and biology could be measured from space.

What do you like to do when you AREN’T sciencing?

I love to bake, learn about different plants, go rock hunting, trail running, rustic camping, stand up paddle boarding and I am newly returning to surfing but on the Great Lakes. I also spend an enormous amount of time with my boys on the beach, searching for cool rocks or treasures on the beach.

What do you wish people knew about scientists or research?

Many scientists also have an artistic outlet as well as their science life. It creates a life-balance. I personally find balance spending my free-time creating art from found objects on the beach, drawing, painting and baking unique pastries. Constantly a life in motion, as a pendulum between science and art.

Dr. Andrea VanderWoude is a contractor and remote sensing specialist with Cherokee Nation Businesses. She is currently working with researchers from NOAA GLERL and the Cooperative Institute for Great Lakes Research.


4 Comments

Casting a high tech sampling net to learn more about the Great Lakes ecosystem

9.JPG

Researchers at GLERL are using a new tool, a MOCNESS, to study the Great Lakes.

In the Great Lakes, communities of plants and animals vary depending on where and when you look. They are dispersed up and down and all around in the water, making it tricky to collect them for research studies. To answer questions about these organisms and how they interact in the Great Lakes ecosystem, scientists from NOAA’s Great Lakes Environmental Research Laboratory (GLERL) and CIGLR (Cooperative Institute for Great Lakes Research) are using a new high tech sampling tool called a MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System).

GLERL’s MOCNESS is the first of its kind to be used in a freshwater system. Scientists are hopeful that this technology will lead to new discoveries about the Great Lake ecosystem, such as where plankton (microscopic aquatic plants and animals) live and what causes their distributions to change over space and time. The MOCNESS will also help scientists learn more about predator-prey interactions that involve zooplankton (microscopic aquatic animals), phytoplankton (microscopic aquatic plants), and larval and juvenile fishes.

MOCNESS_FullScale

A closer look the MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System)

Keeping track of changes in plant and animal communities in the Great Lakes over time is important, especially with changes in climate, the onslaught of invasive species, and land use practices causing increased nutrient runoff into the lakes.

The MOCNESS is a big improvement over the traditional single mesh sized sample collection nets. The sampling system provided by this new tool has a series of nets of different mesh sizes to collect different sized organisms (see a few examples in the gallery below). The operator can remotely open and close these nets, much like an accordion. At the heart of the system is a set of sensors that measure depth, temperature, oxygen, light levels, and the green pigment found in algae, Chlorophyll-a. Because this data can be viewed in real time on the vessel, the operator can better determine what is going on below the water surface and choose where and when to sample different sized organisms.

Here are some of the key questions that the scientists hope to answer using this advanced technology:

  • How do plankton and larval fish respond to environmental gradients (water temperature, dissolved oxygen, UV radiation) over the course of the day, season, and across years?
  • What are the major causes for changing distributions of the animals across space and over time (long-term, seasonal, 24-hour cycle)?
  • How do these changes in affect reproduction, survival, and growth of individuals and their communities?

The MOCNESS has been tested in the waters of lakes Michigan and Huron for the past three years. The team, led by Dr. Ed Rutherford, is supporting GLERL’s long term study of the Great Lakes food webs and fisheries. “The MOCNESS will enhance the ability of our scientists to more effectively observe the dynamics of Great Lakes ecosystem over space and time—a critical research investment that will pay off for years to come,” says Rutherford.

This year, the team is actively processing samples that were collected in the spring and will continue to collect more samples through the fall. The MOCNESS will support ongoing ecological research on the Great Lakes and the results will be shared with others around the region who are working to make decisions about how to manage Great Lakes fisheries and other water resources.

This slideshow requires JavaScript.


1 Comment

Sounds of the storm and coral reef recovery following Hurricanes Irma and Maria in Puerto Rico

By Dr. Doran Mason (NOAA Great Lakes Environmental Research Laboratory) and Felix Martinez (National Centers for Coastal Ocean Science)

2017-10-23-PHOTO-50

University of Puerto Rico grad students servicing a hydrophone at the Weinberg site at La Parguera Natural Reserve on the southwest coast of Puerto Rico.  Photo Credit:  Rebecca Becicka, Ph.D. student at University of Puerto Rico, Mayagüez

Researchers at NOAA’s Great Lakes Environmental Research Laboratory (GLERL) are exploring the use of sound to monitor and assess the health of coastal ecosystems, most recently focusing on the soundscape created by Hurricanes Irma and Maria in Puerto Rico. In collaboration with the University of Puerto Rico at Mayagüez, Purdue University (a partner university in the Cooperative Institute for Great Lakes Research consortium), and the National Centers for Coastal Science (NCCOS), GLERL has launched a pilot study on developing the long-term use of soundscape. To implement this new approach to monitoring, hydrophones, an instrument in measuring sound, are used to track the response of ecosystems to natural (e.g., tropical storms) and human-induced (e.g., stressors such as excess nutrients, sedimentation, fishing pressure, climate change) disturbances.

In this pilot project, hydrophones have been in place for six months at three sites (see below for Google Earth Map of Magueyes Island, La Parguera, Puerto Rico) at La Parguera Natural Reserve on the southwest coast of Puerto Rico prior to and during the two category 4 hurricanes that pummeled the island. Miraculously, the recorders and data survived the storms and were recovered, providing us with a unique opportunity to listen to the hurricanes and to evaluate how quickly reefs recover from a natural disaster.  

What is a soundscape?  Soundscapes are created by the aggregation of sounds produced by living organisms (invertebrates, fish, marine mammals), non-biological natural sounds (waves, rain, movement of the earth), and sounds produced by humans (boats, coastal roads). Changes in the biological portion of soundscape can provide us with the quantitative data to assess the health of the ecosystem in response to natural and human-induced disturbance.  Thus, our overall goal is to develop quantitative indices of coastal ecosystem health, based on the soundscape to assess the state of the environment, and to understand and predict changes, with application towards ecosystem restoration and conservation efforts. The utility of this approach is the use of a low-cost, remote autonomous technology that holds potential in expanding NOAA’s long-term observational capacity to monitor and assess coastal habitats.

Why GLERL?  As part of a long history of monitoring and research in the Great Lakes, GLERL scientists have cultivated a unique expertise in the development of autonomous remote sensing technology. In the last two decades, Purdue University (a CIGLR partner) has been one of the leaders in the development of terrestrial soundscapes as a critical tool to monitor ecosystem change. More recently, interest has grown in expanding this approach into the aquatic realm.  Building on our relationship with Purdue, GLERL and partners are well positioned to advance use of soundscape ecology to meet NOAA’s mission to protect, restore, and manage the use of coastal and ocean resources. In addition to the pilot study, GLERL is partnering with NCCOS to reach out to other NOAA Line Office programs in efforts to formalize the use of soundscapes within NOAA as a scientific program.  For example, efforts are underway to plan an international workshop to establish the foundational principles and identify research and technology gaps for the use of soundscape ecology.

Why Puerto Rico? Original support for this pilot study came from a congressional allocation for enhancing relationships with the cooperative institutes for the benefit of coral reef restoration and conservation. Given the scientific knowledge accrued from NCCOS’ prior investments in La Parguera, GLERL and its NCCOS partner recognized that Puerto Rico would be a prime location to test and develop the use of soundscapes technology to track and quantify the health of coastal ecosystems.

Google Earth Map-MagueyesIsland-PR

Google Earth Map of Magueyes Island, La Parguera, Puerto Rico showing coral reef locations where the hydrophones were deployed at different depths: Weinberg (shelf-edge) – 75′; Media Luna (mid-shelf) – 45′; Pelotas (inner-shelf) – 35′.  Provided by: Prof. Richard Appeldoorn, University of Puerto Rico, Mayagüez

IMG_3548

Colleagues from Purdue University and University of Puerto Rico deploy Media Luna reef site hydrophone for the first time.  Photo credit: Steve Ruberg, NOAA GLERL

IMG_3539

View of La Parguera from Media Luna reef site. Photo credit: Steve Ruberg, NOAA GLERL


Leave a comment

New algorithm to map Great Lakes ice cover

Leshkvich sampling ice

GLERL researcher, George Leshkevich, drilling through the ice in Green Bay, Lake Michigan.

NOAA’s Great Lakes Environmental Research Laboratory (GLERL) is on the cutting edge of using satellite remote sensing to monitor different types of ice as well as the ice cover extent. To make this possible, an algorithm—a mathematical calculation developed at GLERL to retrieve major Great Lakes ice types from satellite synthetic aperture radar (SAR) data—has been transferred to NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS) for evaluation for operational implementation.

Once operational, the algorithm for Great Lakes ice cover mapping holds multiple applications that will advance marine resource management, lake fisheries and ecosystem studies, Great Lakes climatology, and ice cover information distribution (winter navigation).  Anticipated users of the ice mapping results include the U.S. Coast Guard (USCG), U.S. National Ice Center (NIC), and the National Weather Service (NWS).

For satellite retrieval of key parameters (translation of satellite imagery into information on ice types and extent), it is necessary to develop algorithms specific to the Great Lakes owing to several factors:

  • Ocean algorithms often do not work well in time or space on the Great Lakes
  • Ocean algorithms often are not tuned to the parameters needed by Great Lakes stakeholders (e.g. ice types)
  • Vast difference exists in resolution and spatial coverage needs
  • Physical properties of freshwater differ from those of saltwater

The relatively high spatial and temporal resolution (level of detail) of SAR measurements, with its all-weather, day/night sensing capabilities, make it well-suited to map and monitor Great Lakes ice cover for operational activities. Using GLERL and Jet Propulsion Lab’s (JPL) measured library of calibrated polarimetric C-band SAR ice backscatter signatures, an algorithm was developed to classify and map major Great Lakes ice types using satellite C-band SAR data (see graphic below, Methodology for Great Lakes Ice Classification prototype).

ICECON (ice condition index) for the Great Lakes—a risk assessment tool recently developed for the Coast Guard—incorporates several physical factors including temperature, wind speed and direction, currents, ice type, ice thickness, and snow to determine 6 categories of ice severity for icebreaking operations and ship transit.  To support the ICECON ice severity index, the SAR ice type classification algorithm was modified to output ice types or groups of ice types, such as brash ice and pancake ice to adhere to and visualize the U.S. Coast Guards 6 ICECON categories. Ranges of ice thickness were assigned to each ice type category based on published freshwater ice nomenclature and extensive field data collection. GLERL plans to perform a demonstration/evaluation of the ICECON tool for the Coast Guard this winter.

Mapping and monitoring Great Lakes ice cover advances NOAA’s goals for a Weather-Ready Nation and Resilient Coastal Communities and Economies, and Safe Navigation. Results from this project, conducted in collaboration with Son V. Nghiem (NASA/Jet Propulsion Laboratory), will be made available to the user community via the NOAA Great Lakes CoastWatch website (https://coastwatch.glerl.noaa.gov).

 

ice-types

ICECON Scale

Measuring different ice types on Green Bay used to validate the ICECON (ice type classification) Scale in a RADARSAT-2 synthetic aperture radar (SAR) scene taken on February 26, 2017.

 


Leave a comment

“Just Because the Blooms in Lake Erie Slow Down, Doesn’t Mean We Do”

NOAA GLERL harmful algal blooms research program featured on Detroit Public Television

As part of a series on The Blue Economy of the Great Lakes, NOAA’s Great Lakes Environmental Research Laboratory (GLERL) is featured in a short video, produced by Detroit Public Television (DPTV) and published on the DPTV website. The video, which features GLERL and its partners from the Cooperative Institute for Great Lakes Research (CIGLR, known formerly as CILER), describes the advanced technology GLERL uses to monitor, track, predict, and understand harmful algal blooms (HABs) in the Great Lakes. More specifically, the video focuses on efforts in Lake Erie, where over 400,000 people were affected by a 3-day shutdown of the Toledo drinking water treatment facility in 2014. Since then, GLERL and CIGLR have enhanced their HABs research program—much of which is made possible by funding from the Great Lakes Restoration Initiative, or GLRI—to include cutting-edge technologies such as the hyperspectral sensors and an Environmental Sample Processor (ESP), as well as experimental forecasting tools like the Lake Erie HAB Tracker.

In addition to online coverage, the video will be broadcast via DPTV at a future time, yet to be determined.

View the video above, or visit http://bit.ly/2pK2g0J.