NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


Leave a comment

Special Two-Day Science Translation Session at IAGLR 2019

This June, fellow researchers from around the world will gather in Brockport, New York, on the shores of the Erie Canal for IAGLR’s 62nd annual Conference on Great Lakes ResearchHosted by The College at Brockport, State University of New York, the conference will feature four days of scientific sessions and speakers focusing on the theme Large Lakes Research: Connecting People and Ideas. Mark your calendars for June 10-14, 2019. You won’t want to miss it! 

During the conference there will be a special two-day session that highlights the importance of science translation.  The session, Beyond Peer Review: Why You Must Connect Your Science to Stakeholders (and how to do it), will consist of several components—17 formal presentations, a moderated panel discussion, a synthesis discussion with Q&A, as well as a Skills Café. Conference attendees are welcome to join us for any and all portions of this session. We hope to see you there!


Day 1 – Tuesday, June 11th

On Tuesday, the SciComm session will include 12 presentations and a panel discussion moderated by Kate Thompson (NOAA Sanctuaries) with science communication thought leaders Peter Annin (Author), Andrea Densham (Shedd), Sandra Svoboda (DPTV) & TJ Pignataro (Buffalo News). The panelists will explore what they see happening now and what they think the future looks like for connecting people and ideas for large lakes research.

Tuesday Morning (Edwards Hall Room 103)

Tuesday Afternoon (Edwards Hall Room 103)

  • 1:40-3:20 pm – 5 presentations
  • 3:20-3:40 pm – Break
  • 3:40-5:20 pm – 4 presentations

Day 2 – Wednesday,  June 12th

On Wednesday, the SciComm session will continue with 5 formal presentations, and a synthesis discussion in the morning and a Skills Café in the afternoon.

Wednesday Morning (Edwards Hall Room 103)

  • 8:00-9:20 am – 3 presentations
  • 9:20-9:40 am – Break
  • 9:40-10:20 am – 2 presentations
  • 10:20-11:00 am – Interactive Synthesis Discussion and Question & Answer Session moderated by Kate Thompson (NOAA Sanctuaries) with Peter Annin (Author), Andrea Densham (Shedd), Sandra Svoboda (DPTV) & TJ Pignataro (Buffalo News)

Wednesday Afternoon (Edwards Hall Room 102)

  • 1:40 – 5:00 pm – Skills Café  –  This series of short interactive workshops will allow participants to practice a variety of skills that will make them more effective at communicating the “so what” of their research to lay – but key – audiences. 

The Panel: Hear the latest from science communication thought leaders!

Moderator: Kate Thompson, Chief-Education and Outreach Division, Office of National Marine Sanctuaries, National Oceanic and Atmospheric Administration

Kate Thompson is the chief of the Education and Outreach Division for NOAA’s Office of National Marine Sanctuaries. For close to 20 years, Kate has specialized in bringing information and education programs about ocean and Great Lakes conservation alive for diverse audiences across the country and around the world. Under her leadership, sanctuaries has piloted new science communication initiatives, including the web and social media campaign Earth Is Blue, which highlights photos, videos and virtual reality experiences of the National Marine Sanctuary System, and Stories from the Blue, which allows sanctuary stakeholders from scientists to surfers tell their stories through mini documentaries. As part of the Earth is Blue campaign, she also is the managing editor of the Earth is Blue Magazine. Thompson’s goal throughout all her work with NOAA and beyond is to help the public better understand our amazing ocean and Great Lakes, and to inspire the next generation of conservationists.

Peter Annin, Author and Director of the Mary Griggs Burke Center for Freshwater Innovation

Peter Annin is the director of the Mary Griggs Burke Center for Freshwater Innovation and the author of The Great Lakes Water Wars, the definitive work on the Great Lakes water diversion controversy. Before coming to Northland College in 2015, Peter served as a reporter at Newsweek, the associate director of the Institute for Journalism and Natural Resources, and the managing director of the University of Notre Dame’s Environmental Change Initiative. He continues to report on the Great Lakes water diversion issue and has published a second edition of The Great Lakes Water Wars. 

Andrea Densham, Senior Director of Conservation and Advocacy at the Shedd Aquarium

Andrea Densham joined Shedd Aquarium in 2017 to lead the newly launched Conservation Policy and Advocacy team. Created to enhance Shedd’s position as a policy expert, Densham’s team develops and implements the institution’s policy goals. A government affairs thought leader and advisor, she brings more than 20 years of experience in not-for-profit management, strategic planning, research, and public policy and advocacy.

 

TJ Pignataro, Environmental Reporter for the Buffalo News

T.J. Pignataro has been a staff reporter for The Buffalo News for more than 20 years and the environment and weather reporter since 2013. He holds a juris doctor degree from SUNY Buffalo Law School and is completing his Certificate in Weather Forecasting this spring from the Pennsylvania State University’s Department of Meteorology and Atmospheric Science. TJ uses Twitter to convey Great Lakes environmental news, weather emergencies and Great Lakes science in plain language. 

Sandra Svoboda, Program Director, Great Lakes Now, Detroit Public Television

A nine-month stint with The Associated Press brought Sandra to Detroit … 29 years ago. She earned a bachelor’s in journalism from Indiana University and holds two master’s degrees from Wayne State, one in public administration and one in library and information science. The Special Libraries Association IT Division recognized her research with its 2018 Joe Ann Clifton Student Award for her paper on how Detroit voting dynamics can inform citizen engagement strategies. Sandra has worked for The (Toledo) Blade covering education/children’s issues, Detroit’s Metro Times and FEMA, where she deployed to Louisiana to help coordinate/communicate about community rebuilding/planning efforts for/after disasters. Sandra has won awards for broadcast, print, digital and community engagement work from the Michigan Associated Press, the Michigan Association of Broadcasters, Association of Alternative Newsweeklies, State Bar of Michigan, Michigan Press Association and Society of Professional Journalists-Detroit chapter, and Wayne State’s public administration program recognized her with the Distinguished Alumni Award in 2015 for her work covering Detroit’s bankruptcy. She has taught communications, writing, public policy, and political science at Wayne State University and the University of Michigan-Dearborn. As the Great Lakes region has always been her home Sandra has traveled between Minnesota and Tadoussac, Quebec, both on the water and on land. A competitive sailor, she races hundreds of miles each season on the Great Lakes, and once threw out a pitch at a Detroit Tigers game as recognition of her win with her team at the U.S. Women’s Match Racing Championship. She’s also eaten Asian carp as part of her coverage of invasive species.


The Skills Café: Get help communicating your research!

WHO: Do people’s eyes glaze over when you begin to talk about your research? Do you believe your research has the ability to make a difference, but you’re not sure how to get others excited about it too? Then this session is for you! For the researcher looking to improve their accessibility in attaining broader impacts; the early career professional seeking tips on how to set theirselves apart in a competitive market; the passionate scientist looking for ways to ensure their work makes an impact . . . the Skills Cafe is your opportunity to grow and try new things in a fun and supportive setting.

WHAT: This series of short interactive workshops will allow participants to practice a variety of skills that will make them more effective at communicating the “so what” of their research to lay—but key—audiences. Get tips on interacting with the media, hone your speaking skills, get feedback from a mock interview, and learn from the trials and tribulations of your peers!

WHEN: 1:40-5:00 pm on Wednesday, June 12.

WHERE: Edwards Hall, Room 102

For more information and a detailed schedule of activities stop by the NOAA exhibitor booth.


About IAGLR 2019: The 2019 International Association for Great Lakes Research Conference is hosted by The College at Brockport, State University of New York, June 10-14, 2019. The conference will feature four days of scientific sessions and speakers focusing on the theme “Large Lakes Research: Connecting People and Ideas.”

photo of building in water with skyline of city in backgroun


Leave a comment

NOAA and partners team up to prevent future Great Lakes drinking water crisis

A new video SMART BUOYS: Preventing a Great Lakes Drinking Water Crisis released by Ocean Conservancy describes how NOAA forecast models provide advance warnings to Lake Erie drinking water plant managers to avoid shutdowns due to poor water quality.

An inter-agency team of public and private sector partners, working with the Cleveland Water Department, are addressing drinking water safety for oxygen depleted waters (hypoxia). By leveraging NOAA’s operational National Weather Service and National Ocean Service forecast models and remote sensing for the Great Lakes, NOAA’s latest experimental forecast models developed by its Great Lakes Environmental Research Laboratory can predict when water affected by harmful algal blooms and hypoxia may be in the vicinity of drinking water intake pipes. Advance notice of these conditions allows water managers to change their treatment strategies to ensure the health and safety of drinking water.  

“Hypoxia occurs when a lot of organic material accumulates at the bottom of the lake and decomposes. As it decomposes, it sucks oxygen from the water, can discolor the water and allow for metals to concentrate,” explains Devin Gill, stakeholder engagement specialist for NOAA’s Cooperative Institute for Great Lakes Research, hosted at the University of Michigan.

Low dissolved oxygen on its own is not a problem for water treatment. However, low oxygen is often associated with a high level of manganese and iron in the bottom water that then leads to drinking water color, taste, and odor problems. In addition, the same processes that consume oxygen also lower pH and, if not corrected, could cause corrosion in the distribution system, potentially elevating lead and copper in treated water.

“Periodically, this water with depleted oxygen gets pushed up against the shoreline and the drinking water intakes pipes,” said Craig Stow, senior research scientist for NOAA’s Great Lakes Environmental Research Laboratory. “We have buoys stationed at various places and those guide our models to let us know when conditions are right for upwellings that would move this hypoxic water into the vicinity of the drinking water intakes.”

NOAA provides advanced warning of these events so that drinking water plant managers can effectively change their treatment strategies to address the water quality, which is a huge benefit in the water treatment industry.


For more information on NOAA GLERL’s harmful algal blooms and hypoxia research, visit www.glerl.noaa.gov/res/HABs_and_Hypoxia.


Leave a comment

The HAB season is over, but the work goes on

It’s nearly winter here in the Great Lakes—our buoys are in the warehouse, our boats are making their way onto dry land, and folks in the lab are working hard to assess observed data, experiments, and other results from this field season.

habtracker2018

This is a retrospective animation showing the predicted surface chlorophyll concentrations estimated by the Experimental Lake Erie HAB Tracker model during the 2018 season. Surface chlorophyll concentrations are an indicator of the likely presence of HABs. For more information about how the HAB Tracker forecast model is produced and can be interpreted, visit our About the HAB Tracker webpage.

The harmful algal bloom (HAB) season is also long over in the region. The final Lake Erie HAB Bulletin was sent out on Oct. 11, as the Microcystis had declined in satellite imagery and toxins decreased to low detection limits in samples. In the seasonal assessment, sent out by NOAA’s Centers for Coastal Ocean Science on Oct. 26, it was determined that the season saw a relatively mild bloom—despite its early arrival in the lake—and the bloom’s severity was significantly less than that which was predicted earlier in the season. These bulletins and outlooks are compiled using several models. Over the winter, the teams working on the models take what they learn from the previous season, and update their models for future use.

Back in the lab, the HABs team—researchers from both GLERL and the Cooperative Institute for Great Lakes Research (CIGLR)—will spend the winter analyzing data they collected through a variety of observing systems. This summer was packed with the use of new observing technologies, like hyperspectral cameras and the Environmental Sample Processor (in case you missed it, check out this fun photo story of the experimental deployment of a 3rd generation ESP). In addition, GLERL and CIGLR staff maintained a weekly sampling program program, from which scientists are analyzing and archiving samples and conducting experiments.

43447135081_b893240224_o.jpg

Aerial photograph of the harmful algal bloom in Western Basin of Lake Erie on July 2, 2018, (Photo Credit: Aerial Associates Photography, Inc. by Zachary Haslick). Pilots from Aerodata have been flying over Lake Erie this summer to map out the general scope of the algal blooms. In addition to these amazing photos, during the flyovers, additional images are taken by a hyperspectral imager (mounted on the back of the aircraft) to improve our understanding of how to map and detect HABs. The lead researcher for this project is Dr. Andrea VanderWoude, a NOAA contractor and remote sensing specialist with Cherokee Nation Businesses. For more images, check out our album on Flickr.

This lab work is super important for understanding the drivers of toxic algae in the Great Lakes. For instance, in a new study released this month, researchers looking at samples from previous years found that “ . . . the initial buildup of blooms can happen at a much higher rate and over a larger spatial extent than would otherwise be possible, due to the broad presence of viable cells in sediments throughout the lake,” according to the lead author Christine Kitchens, a research technician at CIGLR, who works here in the GLERL lab. This type of new information can be incorporated into the models used to make the annual bloom forecasts.

As you can see, our work doesn’t end when the field season is over.  In spring 2019, when the boats and buoys are back in the water and samples are being drawn from the lakes, researchers will already have a jump on their work, having spent the winter months analyzing previous years, preparing, and applying what they’ve learned to the latest version of the Experimental HAB Tracker, advanced observing technologies, and cutting-edge research on harmful algal blooms in the Great Lakes.


Leave a comment

A message from the director: A global community convenes on the shores of Lake Geneva, France to share lessons learned on large lakes

I had the pleasure of attending the European Large Lakes Symposium (ELLS) – International Association of Great Lakes Research (IAGLR) 2018 international conference entitled “Big Lakes, Small World” during the week of September 23-28, 2018 in Evian, France on the shores of Lake Geneva.  

IMG_6688

The ELLS-IAGLR symposium drew scientists studying large lakes systems from around the world to the shores of Lake Geneva in Evian, France.

This symposium was notable for many reasons, including being the first IAGLR meeting held outside of North America, in conjunction with the 5th European Large Lakes Symposium. I was impressed with the strong Great Lakes presence at ELLS. In addition to myself and Philip Chu representing the NOAA Great Lakes Environmental Research Laboratory (GLERL), colleagues from the Cooperative Institute for Great Lakes Research (CIGLR)—Tom Johengen, Dmitry and Raisa Beletsky—also attended. There were also a number of our Laurentian Great Lakes partners from around the basin participating in the symposium.

Like French cuisine, the conference “menu” was jam-packed with scientific gourmet entrees, which we gorged on each day from 8:45 in the morning until after the poster session concluding at 7:00 each evening.  The conference was held in the historic Palais Lumiere (below), formerly a bathhouse, circa 1902, converted into a convention and cultural center in 2006—where better to hold a conference focused on water?

IMG_6698

The symposium was held at the historic Palais Lumiere  formerly a bathhouse, circa 1902, converted into a convention and cultural center in 2006.

Presentations featured an array of topics, including the chemical, physical, and biological aspects of lakes exotic as the Amazonian floodplain lakes and Russia’s Lake Peipsi, as well as those large lakes familiar to us, such as the Great Lakes, Lake Champlain, and Lake Tahoe. Common issues of concern raised during the symposium involved the dynamic changes caused by multiple stressors, namely, increasing temperature, human populations, invasive species, and harmful algal blooms. One observation that I’m excited to report is the number of times NOAA data, products, and services were referenced in talks—a telltale sign that scientists worldwide are relying on NOAA expertise. Items ranged from a Great Lakes sticker on monitoring equipment to the use of graphics like NOAA global surface temperature maps and GLERL food web charts (twice!).  I also spotted a quote pulled from our 5-year science review and even one from our venerable Craig Stow (see image below). I counted at least 18 presentations that cited a connection to NOAA.

As a Great Lakes stakeholder attending this international symposium, I would like to convey to our Great Lakes partners from around the region that we, as a community, can take pride and satisfaction that our daily work results in global impact on large lakes—small world!

IMG_6709

Michelle Selzer, Lake Coordinator with the Michigan Office of the Great Lakes, quotes GLERL’s Craig Stow on the topic of establishing phosphorus load targets in Lake Erie: “Going forward, our willingness and ability to monitor, evaluate, and update the targets will be more important than the original targets.”

IMG_0324

Philip Chu with Ph.D candidate Theo Baracchini and Dr. Shubham Krishna of Physics and Aquatic Systems Laboratory, Swiss Federal Institute of Technology.

IMG_0321

CIGLR scientist, Dmitry Beletsky, presents at ELLS on a CIGLR/GLERL research project to advance hypoxia forecasting.

 


1 Comment

From scuba diving to lab instruments, Dave Fanslow encourages young scientists to “stay flexible”

A man stands in a laboratory near a black, cylindrical instrument.

Dave Fanslow stands with GLERL’s fluoroprobe.

Dave Fanslow is a GLERL biologist of 25 years. He’s basically done it all, but these days he takes care of the lab’s fluoroprobe – a special instrument that measures different types of algae using light beams. Read our interview with Dave to learn more about the fluoroprobe, along with a decades-old scientific mystery that still haunts him and a fear he had to overcome on the job.

How would you describe your job?

My job is to support the principal investigators with technical know-how in the laboratory. I spend a lot of my day working on instruments right now – the flowcam and the fluoroprobe — which are both used to assess and describe HABs, or harmful algal blooms.

The fluoroprobe is a new device that uses LED lights that trigger a response from the algae, which have unique pigments in them that respond to very distinct wavelengths – so it’s able to distinguish between types of algae simply by flashing an LED light as you pull it through the water. It first came out in about 2014. We had one of the first here at GLERL.

What is the most interesting thing you’ve accomplished in your job?

The most interesting thing that I worked on was actually an unresolved question, the disappearance of the Diporeia from Lake Michigan. There was an amphipod organism called Diporeia that is still present in tiny numbers but used to be really common, and was the basis for the lower food web in Lake Michigan prior to the expansion of quagga mussels. In the mid-90’s, those organisms plummeted from numbers of around 10,000 per square meter down to practically zero in the large majority of the lake.

There was some assumption of effect by zebra mussels and quagga mussels, but we never did really figure that out. The change in the food web was occurring anyway, where quagga mussels were going to take over and dominate the system…so the exact reason for the disappearance of the Diporeia didn’t really matter in the ultimate outcome. But, it was a mystery that piqued my interest and I wish we had been able to describe it. It may have been relevant for some other instance. If it was a disease, if it was an invertebrate disease that was introduced by some other invasive species, that’s a form of microbiological pollution, and it would’ve been nice to nail that down and figure that out.

What do you feel is the most significant challenge in your field today?

The hardest part about doing what we do is the disconnect that I sometimes feel exists between policymakers and scientists. And, I know that’s something that scientists and researchers have struggled with forever, it’s not new, and it’s an ongoing problem to communicate the issues and hope that policymakers make good decisions based on good information.

Where do you find inspiration? Where do your ideas come from in your research or other endeavors in your job?

Most of my inspiration comes from encounters with the public, family and friends who are invariably enthusiastic and concerned about the Great Lakes. People in Michigan in particular, it’s part of our identities, and so that’s where I get my motivation because I know people care.

A man in a laboratory points at graphs on a computer screen.

Dave Fanslow explains some data coming from the fluoroprobe.

There’s a fun story about a fear you had to overcome to do this job. Can you tell us about that?

When I first got the job interview, I was told that they wanted me to do scuba diving to collect zebra mussels. This was at the very beginning of the zebra mussel invasion in 1992. I wasn’t super comfortable with swimming and the water, but I thought I would check it out. So I did my research, read about it, went to the pool and practiced, and said yeah I’ll take the job. Then I got trained at NOAA diving headquarters in Seattle where they have retired Navy Seals conducting the training. Then, I conducted over 500 dives over the next 6 or 7 years, mostly related to collecting zebra mussels and then also in the early stages of the Thunder Bay Marine Sanctuary, observing some of the wrecks and establishing moorings up there.

How would you advise young people interested in science as a career path, or someone interested in your particular field?

My general advice would be that they be flexible in terms of not narrowing down their discipline too much until they get out in the field and discover what the opportunities are. I know that in my career, what I have worked on, the area of technical expertise has ranged wildly over the 25 years I’ve been at GLERL. From picking bugs initially, to measuring lipid content, to measuring enzyme content in mussels and Diporeia…to now I’m working with electronic instruments. So, be flexible.

What do you wish people knew about scientists or research?

Well, one thing I think that people tend to assume about scientists is that they’re eggheads who are narrowly focused on their own work to the exclusion of the rest of the big questions about what’s going on in the environment and in society in general. So, scientists are well-rounded and multi-dimensional people too.

What do you like to do when you AREN’T sciencing?

When I’m not at the lab I have raced my bike a lot over the years, starting when I was an undergraduate. I am now kind of transitioning into middle age and doing other things like gardening and canoeing and fishing. Usually it involves being outside in the environment and making observations about the plants and the bugs and the weather and the things that are around me. We have a place on Lake Superior, and just being there and seeing the change in the weather from day to day and hour to hour is a blast; it’s one of my favorite things.


Leave a comment

A message from the Director: Great Lakes research highlighted at the 2018 World Environmental and Water Resources Congress

cris-surbeck-sri-kamojjala-deborah-lee

(Left to right) Cristiane Surbeck, PE, D.WRE,  EWRI President (2018), Associate Professor, Department of Civil Engineering, University of Mississippi; Sridhar Kamojjala, PE, D.WRE, EWRI 2018 Conference Chair, Las Vegas Valley Water District; Deborah H. Lee, PE, D.WRE, Past President American Academy of Water Resources Engineers, NOAA GLERL Director

By Deborah H. Lee, Director, NOAA Great Lakes Environmental Research Laboratory

Recently, I had the opportunity to bring NOAA in the Great Lakes to the 2018 World Environmental and Water Resources Congress. The conference, held in Minneapolis the first week of June, brought together of several hundred civil engineers and members of the Environmental Water Resources Institute (EWRI). The Institute is the largest of the American Society of Civil Engineers’ 9 technical institutes, with about 20,000 members serving as the world’s premier community of practice for environmental and water-related issues.

As the invited keynote luncheon speaker, I presented, “Keeping the Great Lakes Great: Using Stewardship and Science to Accelerate Restoration.” In keeping with this year’s theme of “Protecting and Securing Water and the Environment for Future Generations,” my focus was NOAA’s science and restoration success stories, highlighting the many accomplishments of the Great Lakes Restoration Initiative.

I took the audience on a virtual tour of NOAA’s most exciting and innovative projects. Among those discussed were Areas of Concern, preventing and controlling invasive species, reducing nutrient runoff that contributes to harmful/ nuisance algal blooms, restoring habitat to protect native species, and generating ground-breaking science. 

I purposefully took a multimedia approach in reaching out to the EWRI community, recognizing that not all may be familiar with the Great Lakes and NOAA’s role in the region. To keep the audience engaged and entertained, several short videos were integrated throughout my talk, including the Telly award-winning “NOAA in the Great Lakes” and the short animation “How Great are the Great Lakes?” Three video clips on Great Lakes Restoration Initiative projects that highlighted the positive environmental and economic impacts of NOAA’s work were also incorporated.

Overall, I see my participation in this high profile conference as a great opportunity to raise awareness on the Great Lakes and NOAA’s mission, and was very pleased with the interest and enthusiastic response to my presentation. In looking ahead, I will be serving as EWRI’s next vice-president beginning this October and then sequentially as president-elect, president and past president in the following years. I look forward to continuing to work as steward for Great Lakes issues and advancing NOAA’s work in the region.


Leave a comment

GLERL Ocean(lake)ographer Eric Anderson on watching the Straits of Mackinac

Eric Anderson, GLERL oceanographer, used to study the movement of fluid inside bone tissue — now he studies the movement of water in the Great Lakes.

Eric Anderson is NOAA GLERL’s resident oceanographer (but his Twitter handle is @lakeographer—you should trademark that one, Eric). At its core, his research centers around the movement of water. You might have seen our animations of currents in the Straits of Mackinac, or of meteotsunamis coming across Lake Michigan — he’s the guy behind those computer models.

Some cool things about Eric are that he plays the banjo, that he used to study the movement of fluid inside bone tissue, and that he’s quick to remind us people were watching the Straits of Mackinac millennia before his computer models existed. Read on to learn more cool things!

How would you describe your job?

My research is on hydrodynamics, which is a fancy way of saying the moving physical aspects of the water in the Great Lakes—things like currents, temperatures, ice, and waves. Most of my day is built around looking at measurements of the water and air and then developing computer models that simulate how the lakes respond to different weather conditions. This field of science is particularly helpful in safe navigation of the lakes, responding to contaminant spills, search and rescue operations, and understanding how the ecosystem responds to different lake conditions.

What is the most interesting thing you’ve accomplished in your job?

Maybe the most rewarding has been working on the Straits of Mackinac. It’s one of the most beautiful spots in the Great Lakes, but also one of the most dynamic, with high-speed currents changing every few days, if not hours. A groundswell of attention to the Straits in the last several years has pushed the public to get more engaged and learn about the conditions in the Straits, and I’ve been glad to help where I can.

As part of this work, we’ve found some 1600’s-era [settler] written accounts of the currents in the Straits. We also know that [Indigenous] people have been watching the Straits for thousands of years, and it’s rewarding to continue this thread of knowledge.

What do you feel is the most significant challenge in your field today?

It seems like the hardest thing is to communicate the science. People are starved for information, and there’s a real love out there for learning about the Great Lakes. All we can do is to try and keep the flow of information getting out to the folks who care, and just as important, to those who don’t think they care. When you see environmental science covered in the news, it’s usually reporting on something negative or even catastrophic, which is certainly important, but there are pretty cool discoveries being made routinely, big and small, and those don’t often seem to make it to the headlines. We have to keep working hard to make sure these stories make it out, and at the same time keep our ears open to the concerns that people have for the lakes.

Where do you find inspiration? Where do your ideas come from in your research or other endeavors in your job?

Inspiration is everywhere. Try to hike up to a good vantage point overlooking the lake, like the dunes or a bluff, and not feel inspired. More often, though, inspiration comes from talking with other people, whether scientists, students, or interested members of the public. I can’t think of a time where I’ve given a public seminar and not walked away with a new question or idea to investigate. People’s enthusiasm and bond with the Great Lakes is infectious, and so I try to tap into that as often as I can.

Two meteotsunamis, large waves caused by storm systems, came across Lake Michigan on April 13, 2018. Eric Anderson models meteotsunamis in his role as oceanographer at NOAA GLERL.

How would you advise high school students interested in science as a career path, or someone interested in your particular field?

I took somewhat of a winding career path to get where I’m at with GLERL, working in car assembly plants and then on the nano-fluidic flow inside bone tissue before ending up in physical oceanography. I didn’t really know what I wanted in high school or college, but I knew physics and math were where I felt at home. So I found a way to learn the fundamentals that I’ve been able to apply in each of these jobs, and that allowed me to explore different parts of science and engineering. Not everyone will have the same chances or opportunities, but if you can find a way to really solidify the fundamentals and just as importantly seek out a breadth of experiences, you’ll be in a better position when those opportunities do come along.

What do you like to do when you AREN’T sciencing?

I’m either hanging out with family, playing music, or talking with someone about how I wish I was playing more music.

What do you wish people knew about scientists or research?

By and large, science is curiosity driven, often fueled by the scientist’s own enthusiasm, and in my case also by the interests of the public. Whether it’s a new discovery, or re-codifying or quantifying something that others have observed for millennia, there’s no agenda here other than to understand what’s happening around us and share whatever pieces we can make sense of. I’ll add a sweeping generalization that scientists love to talk about their research, so don’t be afraid to ask.