NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


Leave a comment

GLANSIS Technical Memos Add New Data to Invasive Species Risk Assessments

With over 180 non-native aquatic species currently present in the Great Lakes and potential new invaders on the horizon, keeping track of the impacts and risks that these organisms pose is an ongoing challenge. The Great Lakes Aquatic Nonindigenous Species Information System (GLANSIS), a one-stop shop for information about aquatic nonindigenous species,  hosts data on the historical and ongoing effects of aquatic organisms introduced to the region. Two NOAA Technical Memos serve as the underlying risk and impact assessments for the GLANSIS database and researchers recently completed important annual updates to these documents (TM-161c and TM-169c). These updates allow researchers to stay current on potential risk and impacts of these organisms to the ecosystem.

A screenshot of the GLANSIS homepage.
GLANSIS technical memos contain the risk and impact information provided by the database.

What are the GLANSIS tech memos?

NOAA Technical Memos are used for the timely documentation and communication of raw data, preliminary results of scientific studies, or interim reports that may not have received formal external peer reviews in the style of academic journal articles or manuscripts. These numbered publications are publically available online in PDF format, and serve as important research documentation and reference material.

The GLANSIS team updates two different tech memos every year by reviewing and synthesizing the scientific literature on invasive — or potentially invasive — aquatic species. The first, TM GLERL-161et seq., “An Impact Assessment of Great Lakes Aquatic Nonindigenous Species”, provides the updated impact assessments for nonindigenous species documented as reproducing and overwintering in the Great Lakes, focusing on their ecological, socio-economic, and beneficial impacts to the region. The second, TM GLERL-169 et seq., “A Risk Assessment of Potential Great Lakes Aquatic Invaders documents species that have been identified as likely to become invasive if introduced to the Great Lakes region. The 2019 updates document the updated impact assessments for 89 of the 188 nonindigenous species (TM-161c) and four assessments were updated and eight new species were added for potential invasives (TM-169c).  

Why are the tech memos updated every year, and why are they important?

The GLANSIS technical memos provide transparent, publicly-available documentation of the risk assessment process that underlies the species profiles in the database. Not only do they provide the summary information available in the website, they also share all the original sources and the details of the specific semi-quantitative analysis behind declaring particular species ‘high-impact’. New and improved data on aquatic invasive species is being published all the time, and documenting annual updates to risk and impact assessments helps to keep the GLANSIS database up-to-date and allows researchers to track the changes in the state of knowledge for specific species through the years. Each update takes a new look at how the latest data influences larger-scale patterns and trends. Unlike a website, where old versions are overwritten by the new, the technical memos provide a stable, citable reference point.

The GLANSIS tech memos can be read in full at the NOAA Great Lakes Environmental Research Lab’s publications page. To learn more about GLANSIS, check out https://www.glerl.noaa.gov/glansis/ and explore the site for yourself.


Leave a comment

Eight years of Great Lakes underwater glider data now available to the public

CIGLR’s Russ Miller deploying glider in Lake Huron, June 2017

NOAA Great Lakes Environmental Research Laboratory (GLERL) and the Cooperative Institute for Great Lakes Research (CIGLR) recently posted eight years’ worth of Great Lakes autonomous underwater vehicle (AUV), or “glider data ”  on NOAA’s Integrated Ocean Observing System (IOOS) Underwater Glider Data Assembly Center (DAC) map. The map is a collaborative effort and includes current and historical glider missions dating back to 2005 from around the planet. This data is useful to government agencies, researchers, environmental managers, and citizens who use Great Lakes data for better understanding the characteristics of Great Lakes water.

CIGLR glider just before a deployment in Lake Michigan at the NOAA GLERL Lake Michigan Field Station in Muskegon, MI.

The collection and analysis of this data is a close collaboration between NOAA GLERL, CIGLR and partner institutions. CIGLR owns and operates the glider, and it is deployed using NOAA GLERL vessels. Data managers and researchers from both organizations are working together to make this data as useful and accessible as possible. This cooperative project, which has been funded by the Great Lakes Observing System (GLOS; a part of the IOOS program), aims to support science, public safety, and security through the use of unmanned systems (UxS).

Glider Tech Specs

This glider is buoyancy-driven, meaning it controls its depth in the water by inflating and deflating a “bladder” that in turn makes it sink or float. It typically operates at around 30 meters (100 feet) below the lake surface, but can go as deep as 200 meters (650 feet) when needed. While the glider is able to work on it’s own, scientists wirelessly communicate with it regularly throughout its journey when it’s at the surface. It’s programmed to resurface regularly for check-ins, so we always know right where it is and we can even instruct it to change its mission path if necessary. It may only travel an average of 1 kilometer (0.6 miles) per hour, but its missions can last up to 60 days and provide us with amazing data sets to help answer questions about the Great Lakes ecosystem. Check out the video below from NOAA’s Ocean Service and visit this fact page for more on how the glider works.

The importance of data collection

With every deployment, the glider measures the water’s physical properties such as temperature, mineral content, pressure, and salinity. (Yes, even the Great Lakes have a tiny bit of salinity!) It also measures biological properties such as chlorophyll fluorescence and concentrations of dissolved organic matter, which indicate the region’s level of primary biological productivity (the amount of organic matter produced by phytoplankton in the water). Phytoplankton might be tiny, but their productivity is extremely important to the lakes’ ecosystems because it provides nutrients to the rest of the food web.

CIGLR glider floating just below the surface of the water.

When you piece together all these day-to-day measurements, you can use them to study seasonal changes such as movement of the thermocline – or steep temperature gradient in the lake – which can impact the rate of biological activity in the spring and summer. The size and intensity of spring algal blooms and occasional “whiting events” (accumulations of calcium carbonate particles in the water due to increased biological productivity) are other examples of seasonal biological phenomena the glider can observe. The glider collects high-quality data efficiently and cost-effectively, day and night in all weather conditions, ultimately allowing us to collect more data in a shorter amount of time than is possible with traditional ship-based methods. The robust datasets it gives us advance our understanding of Great Lakes processes on short-term, seasonal, and annual timescales — and lay a foundation for observing changes in the lakes over several decades.

This map shows NOAA GLERL/CIGLR underwater glider pathways in southern Lake Michigan, available on NOAA’s Integrated Ocean Observing System (IOOS) Underwater Glider Data Assembly Center map.  A long-term series of Lake Michigan observations in the southern basin of Lake Michigan began in 2012, criss-crossing between Muskegon, Milwaukee. This complements data collected by the NOAA National Data Center Station 45007, as well as temperature string in the southern basin of the lake,  connecting the observations of NOAA GLERL and University of Wisconsin-Madison. 

Glider paths shown on the maps include all deployment from 2012-2019. These paths expand observations collected by Federal and University research vessels in the same regions of the Great Lakes, through the use of other tools, such as NOAA GLERL’s Plankton Survey System (PSS) and Multiple Opening and Closing Net and Environmental Sampling System (MOCNESS). It is important to have a long period of observations from many types of collection across the lakes to better understand how things like water temperature at different depths, inputs from rivers, and seasonal changes to other characteristics of the water affect the ecosystem.This information is useful in understanding the impacts of invasive species, harmful algal blooms, and our changing climate.

This map shows NOAA GLERL/CIGLR underwater glider pathways in the Great Lakes, available on NOAA’s Integrated Ocean Observing System (IOOS) Underwater Glider Data Assembly Center map. In 2013, 2015, 2017, and 2018, glider deployments were chosen to complement ship- and glider-based observations of the Environmental Protection Agency (EPA), NOAA, United States Geological Survey (USGS), and Coordinated Science and Monitoring Initiative (CSMI) in Lakes Michigan, Ontario and Huron.  Lake Erie is too shallow for effective use of this glider, and Lake Superior has been monitored by EPA and University of Minnesota Large Lakes Observatory gliders.

Future deployments and collaboration

Planning is currently underway for future missions in the Great Lakes and potential applications for the glider’s wide variety of data. The glider will also be used this year on Lake Michigan for research and observations during the 2020 Cooperative Science and Monitoring Initiative (CSMI), a binational effort to coordinate science and monitoring activities in one of the five Great Lakes each year. This year’s CSMI research will likely use the glider to gain a better understanding of water quality in the lake’s nearshore regions – the area in the water from where waves begin to break, up to the lowest water point on the beach. With great partners like CIGLR and GLOS, the future is bright for NOAA’s underwater glider explorations.


1 Comment

Sinkhole Science: Groundwater in the Great Lakes

If you followed our fieldwork last summer, you probably remember hearing about our research on the fascinating sinkholes and microbial communities that lie at the bottom of northern Lake Huron off the coast of Alpena, MI. Now you can experience this research as a short film!

NOAA GLERL has partnered with Great Lakes Outreach Media to create a short film entitled Sinkhole Science: Groundwater in the Great Lakes. It was recently featured on Detroit Public Television’s Great Lakes Now program as well as the Thunder Bay National Marine Sanctuary’s International Film Festival. 

In the film, you’ll learn how NOAA GLERL’s Observation Systems and Advanced Technology (OSAT) branch studies how these sinkholes impact the water levels and ecosystems of the Great Lakes. GLERL’s OSAT Program Leader Steve Ruberg explains the high-tech gadgets involved in this research, including a remotely operated vehicle (ROV), a tilt-based current sensor, and temperature strings to determine vertical movement of groundwater entering the lakes through the sinkholes.

Hit “play” to dive into the exciting world of GLERL’s sinkhole science!

Researchers from NOAA GLERL’s Observation Systems and Advanced Technology team set out on the R/V Storm to study sinkholes on the floor of northern Lake Huron off the coast of Alpena, MI. Photo: Great Lakes Outreach Media
Researchers on NOAA GLERL’s R/V Storm deploy a remotely operated vehicle (ROV) to observe sinkholes at the bottom of Lake Huron off the coast of Alpena, MI. Photo: Great Lakes Outreach Media
NOAA GLERL’s OSAT Program Lead Steve Ruberg and Instrument Specialist Steven Constant observe a sinkhole via live video feed from the ROV. Photo: Great Lakes Outreach Media
NOAA GLERL Marine Engineer Kyle Beadle controls the ROV in order to observe sinkholes from the R/V Storm. Photo: Great Lakes Outreach Media
NOAA GLERL Instrument Specialist Steven Constant and Vessel Captain Travis Smith monitor the ROV as it dives beneath the surface to observe a sinkhole. Photo: Great Lakes Outreach Media


Leave a comment

Great Lakes ice, evaporation, and water levels

Ice conditions in Lake Superior under a clear blue sky near Grand Marais. March 24, 2014. Credit: NOAA

Editor’s Note: This blog post was updated on February 4, 2020 to reflect an updated Seasonal Ice Forecast. Please be sure to read the entire update for more information on this active area of research at NOAA GLERL!

As many of us in the Great Lakes community start to don our parkas and break out the snow shovels, we know the splashing waves on our shorelines will soon be replaced with ice. And, with near-record high water levels in the lakes this year, the question of how ice and water levels will affect coastal communities in the months ahead looms large. 

The role of ice in the Great Lakes water budget

To start, we know that evaporation plays a major role in water levels by withdrawing water that enters the lakes from precipitation and runoff. So, high evaporation contributes to lower water levels, and low evaporation contributes to higher water levels. (For more on the Great Lakes water budget, check out this infographic.)  Traditional thinking is that high ice cover forms a “cap” that leads to decreased evaporation of lake water. However, we now know that the relationship between ice, evaporation, and water levels is more complex than that. 

While this assessment on Great Lakes evaporation from Great Lakes Integrated Sciences & Assessments explains that high ice cover is still associated with less evaporation the following spring, it also reports that evaporation rates before winter have an effect on how much ice forms in the first place. Specifically, it explains that high evaporation rates in the fall correspond with high ice cover the following winter. So just as ice cover can influence evaporation, the reverse is true as well – a much different story than the one-way street it was previously thought to be.

A look at 2020 ice cover: NOAA GLERL’s observations & predictions

On January 1st, 2020, the total Great Lakes ice cover was 1.3%. That’s about a third as much ice as around the same time last year, and barely anything compared to early 2018, when it was already about 20%. You’ll see in the figure below that shallow, protected bays tend to freeze first, especially ones that are located in the northern Great Lakes region. So it makes sense that most of the ice so far is in the bays of Lake Superior, followed by northern bays in Lakes Michigan and Huron like Green Bay and Georgian Bay.

Click here for more comparisons like this on GLERL’s website

GLERL conducts research on ice cover forecasting on two different time scales: short-term (1-5 days) and seasonal. GLERL’s short-term ice forecasting is part of the upgrade to the Great Lakes Operational Forecast System (GLOFS), a set of models currently being transitioned to operations at the National Ocean Service to predict things like currents, water temperature, water levels, and ice. The ice nowcast and forecast products (concentration, thickness, velocity) have been tested for the past several years and will soon become operational (available for the general public). 

GLERL’s ice climatologist, Jia Wang, produces an experimental annual projection for Great Lakes ice cover using a statistical model that predicts maximum Great Lakes ice cover percentages for the entire season. This model’s prediction is based on the predicted behaviors of four global-scale air masses: ENSO (El Nino and Southern Oscillation), NAO (North Atlantic Oscillation), PDO (Pacific Decadal Oscillation), and AMO (Atlantic Multidecadal Oscillation). While they’re all pretty far away from the Great Lakes, past research has shown that these air masses — or global teleconnections — heavily influence the year-to-year variability of Great Lakes ice cover. 

Based on this experimental model’s results, NOAA GLERL projects this Great Lakes ice cover this winter to be around 47%. That’s almost 9% below the long-term average of 55.7%. Here’s the preliminary projection broken down by lake:

Lake Superior: 54%

Lake Michigan: 41%

Lake Huron: 66%

Lake Erie: 80%

Lake Ontario: 32%


Updated Seasonal Ice Forecast

On 1/24/2020, GLERL researchers reran the experimental ice forecast model. The reason for the revised ice projection was due to significant deviation in the actual teleconnection indices from what was predicted in November. Because the model uses these predicted teleconnections to predict ice cover, it is important to use the most accurate values. The experimental ice forecast model is rerun to get updated values. NOAA GLERL’s research towards improving our capabilities for ice forecasting is ongoing. This research product continues to evolve as we gain understanding of the complex climatic drivers for the Great Lakes Region.

Lake Superior = 46-54%
Lake Michigan = 23-42%
Lake Huron = 47-72%
Lake Ontario = 16-36%
Lake Erie = 67-74%

Why did the 2020 Great Lakes ice cover forecast change? / What factors go into this forecast?

The experimental Great Lakes ice forecast is initially calculated in November and is based on a model run based on the forecasted teleconnection patterns for December, January and February. If the teleconnection values diverge from the forecast (that is, the climate did not act as predicted) then the experimental ice forecast model is updated with the latest information on expected teleconnection indices for the remainder of the winter.

What does the ice coverage range mean?

Because there is uncertainty with this experimental forecast, two different versions of the model are used. Version “a ” uses only 4 teleconnection patterns (NAO, AMO, ENSO, PDO) as variables (inputs). Version “b” also includes observed November lake surface temperature (LST) as a variable. November and December LST were shown to be equally well correlated with ice cover but by using November LST, it enables the forecast to be made a month earlier.

Ice cover is low right now, what could happen that would increase ice coverage?

A lot can still happen as there are many weeks of winter left. Historically, much of the major freezing happens in February. However, if temperature continues to remain abnormally warm, it is unlikely ice cover would reach these values.

Why is it important to continue this research?

NOAA GLERL continues to refine the ice forecast model, active research designed to improve the Great Lakes ice forecast. We plan to improve the forecast skill by adding the cumulative freezing degree days since December 1, and update the forecast every two weeks throughout the ice season.


Predicting Great Lakes water levels

Forecasts of Great Lakes monthly-average water levels are based on computer models, including some from NOAA GLERL, along with more than 150 years of data from past weather and water level conditions. The official 6-month forecast is produced each month through a binational partnership between the U.S. Army Corps of Engineers and Environment and Climate Change Canada.

Want to know more about GLERL’s ice research? Visit our ice cover webpage for current conditions, forecasts, historical data, and more!

Great Lakes ice cover facts since 1973

94.7% ice coverage in 1979 is the maximum on record.

9.5% ice coverage in 2002 is the lowest on record.

11.5% ice coverage in 1998, a strong El Niño year.

The extreme ice cover in 2014 (92.5%) and 2015 (88.8%) were the first consecutive high ice cover years since the late 1970’s.

14066190766_c1623828fb_o
On March 6, 2014, Great Lakes ice cover was 92.5%, putting winter 2014 into 2nd place in the record books for maximum ice cover. Satellite photo credit: NOAA Great Lakes CoastWatch and NASA.


2 Comments

Millions of Microbes: The Unexpected Inhabitants of Lake Huron’s Underwater Sinkholes

When most people think of sinkholes, a massive cavity in the ground opening up and swallowing a car is what usually comes to mind. But when scientists at the NOAA Great Lakes Environmental Research Laboratory (GLERL) hear “sinkholes,” their minds jump to an unusual place — the bottom of a Great Lake.

Aerial view of research boat on green water
Researchers on GLERL’s R/V Storm study sinkholes in northern Lake Huron off the coast of Alpena, Michigan. (Credit: David J Ruck/Great Lakes Outreach Media)

Thousands of years ago, off the coast of Alpena, Michigan, patches of ground beneath Lake Huron collapsed to form a series of underwater sinkholes — some measuring hundreds of feet across and up to 60 feet deep. You may have read this NOAA.gov article about how these sinkholes are contributing water to Lake Huron, but did you know they also support a huge kingdom of microorganisms?

Microbes might be tiny, but they’re one of the biggest research topics in the Great Lakes. They thrive near the sinkholes because the groundwater seeping in has the perfect chemistry for their survival: low oxygen levels and lots of chloride and sulfate, which come from the dissolved limestone underlying the lake. These factors make the sinkholes inhospitable for fish and other wildlife normally found in the Great Lakes, which means these microbes have a much easier time surviving there than other creatures. With perfect living conditions and little competition, they’re so abundant that they form purple, green, and white microbial mats that cover the lake floor like a colorful carpet.

Floor of Lake Huron covered by purple and white microbial mats with bubbles in them.
Purple microbial mats in the Middle Island Sinkhole in Lake Huron, June 2019. Small hills and “fingers” like this one in the mats are caused by gases like methane and hydrogen sulfide bubbling up beneath them. (Credit: Phil Hartmeyer, NOAA Thunder Bay National Marine Sanctuary)

Scientists at GLERL are collaborating with partners from the University of Michigan and Grand Valley State University to see just what these microscopic lake dwellers can teach us. This video by Great Lakes Outreach Media highlights how they can even give us a deeper insight into the history of Earth itself.

Associate Professor Greg Dick from the University of Michigan discusses cyanobacteria’s important role in Earth science. This clip is from Great Lakes Outreach Media’s upcoming documentary, “The Erie Situation.”

Some sinkholes are so deep that sunlight can’t reach them, but that doesn’t stop some microbes from calling them home. They’re able to live their entire lives in complete darkness, because they get their energy from the added minerals in the water rather than from sunlight — a process called chemosynthesis. But whether they need sunlight or not, several of the microbial species present have proven to be full of surprises.

“In the near-shore systems, the cyanobacteria we found have DNA signatures that come closest to comparing to the cyanobacteria found at the bottom of a lake in Antarctica. So that’s a strange coincidence,” said Steve Ruberg, the scientist in charge of sinkhole research at GLERL. “Some of the other bacteria we’ve found in the deeper systems have only been found off the coast of Africa.”

Fish sitting on a rock, which is covered by purple and white microbes
A burbot resting on rocks covered in purple and white microbial mats inside the Middle Island sinkhole in Lake Huron. (Credit: Phil Hartmeyer, NOAA Thunder Bay National Marine Sanctuary)

The particular sinkholes we’re studying are located within NOAA’s Thunder Bay National Marine Sanctuary, an area of Lake Huron that’s federally protected for the purpose of preserving nearly 200 shipwrecks. In fact, the only reason we know about these sinkholes is because they were discovered by accident only 18 years ago, on a research cruise documenting the shipwrecks.

Close up of rocks covered in  purple, white and green microbes on the bottom of Lake Huron, with a diver in the background.
A diver observes the purple, white and green microbes covering rocks in Lake Huron’s Middle Island Sinkhole (Credit: Phil Hartmeyer, NOAA Thunder Bay National Marine Sanctuary)

So why did this microbial paradise come into existence in the first place? The story goes back much further than the sinkholes’ discovery in 2001. About 400 million years ago, before the Great Lakes even existed, a layer of limestone bedrock formed beneath what is now Lake Huron. Then around 10,000 years ago, underground caves were created when a chemical reaction between the limestone and acidic groundwater dissolved away holes in the bedrock. All that was left were weakly supported “ceilings” that eventually collapsed into the sinkholes we — and the microbes — know and love today.

Close up of rocks covered in purple, white and green microbes on the floor of Lake Huron
Purple cyanobacteria and white chemosynthetic mats on the floor of Lake Huron with Lowell Instruments current meter. (Credit: Phil Hartmeyer, NOAA Thunder Bay National Marine Sanctuary)

Since Lakes Michigan and Erie have the same limestone bedrock as Lake Huron, GLERL scientists think these lakes could be home to more of these fascinating underwater features. So while the excitement of this fieldwork has died down for the year, our research on Great Lakes sinkholes and their tiny inhabitants is far from over.


Leave a comment

Ron Muzzi: An inquisitive mind opens the door for a career in marine engineering at NOAA GLERL

Profiler Deployment Aug 1999

A profiler, deployed in August 1999, was designed by Ron Muzzi, to autonomously climb up and down a mooring cable in Lake Michigan. The profiler (above) carried a CTD sensor providing water quality measurements on conductivity, temperature and density throughout the water column.

Ron Muzzi has led the life of a marine engineer at NOAA’s Great Lakes Environmental Research Laboratory (GLERL) since 1979.  Throughout his career, Ron has worked to extend the reach of technology to study the Great Lakes. In leading GLERL’s Marine Instrumentation Laboratory (MIL) team of engineers, he has worked on the development of instrumentation and equipment to monitor the physical, chemical, and biological changes of our freshwater lakes. Some of these monitoring tools have been invented by Ron and his MIL team and others adapted from oceanographic equipment to large freshwater lake use.

So what would lead a 19 year old electrical engineering student at the University of Michigan (UM) to pursue a life-long career as a marine engineer? Ron, a self-professed tinkerer, thinks it’s probably his keen sense of curiosity.  Ron recalls that from a young age, “I was constantly experimenting—taking things apart and then putting them back together in the process of fixing things.” He actually built his own computer (known as the COSMAC ELF) while still in high school.  It was programmed with a hex keyboard and display, but would also play simple video games programmed by Ron.

Ron launched his career at GLERL as a part time engineering aid when he was a college freshman. In the process of completing his college education while working at lab, he followed the advice of his supervisor by taking courses that built broad foundation in math, science, physics, chemistry, and thermodynamics. This foundation has served Ron well as an electronics engineer, a position that later transitioned into MIL team lead for GLERL.

In doing the job of a marine engineer, Ron describes himself as being a ‘jack of all trades’ as he manages the front lines in delivering real time data from the Great Lakes back to the lab for analysis and modeling. Speaking from many years of experience, Ron stresses that our monitoring systems must be designed and built to stand up to the rugged environment of the Great Lakes. These monitoring systems— made up of integrated electrical and mechanical components—must not only survive working in the water, but also reliably provide accurate data. He identifies one of the most challenging aspects of his job is “knowing what to do when things go wrong in the field and how to solve those problems, including when problem solving needs to be diagnosed remotely from the lab.”

CurrentMeters_Circa_1980-90s

Current meters instruments used from the 1970s to 1990s that measured current velocity and direction on a cassette tape that was transferred to a main frame computer.

In looking back to the mid-1980s, early on in Ron’s career, lake hydrology was one of the focuses of GLERL research. In a project to predict the fluctuating Great Lakes water levels, measurements were taken in real time of the flow rate (velocity) of the Detroit River. To accomplish this, Ron and his team deployed an Acoustic Doppler Current Profiler (ADCP) (left). Ron recounts one of his experiences using the ADCP: “During a strong wind event, the ADCP accurately measured a temporary river flow reversal that occurred throughout the water column. Up until that time, this had never been measured before. The event was observed to occur after a strong south wind pushed the water in Lake St. Clair to the north, making the level of the south end lower and then shifted to a strong east wind that pushed water into the western end of Lake Erie making the level of that lake higher. So until it could re-balance itself, the water level at the source of the Detroit River was lower than the water level at the mouth of the Detroit River, causing the river to flow upstream.  For about an hour the Detroit River was actually flowing north!”

Ron recognizes the importance of listening carefully to the scientists to make sure he understands what they are trying to learn about the Great Lakes in their research pursuits. In doing so, Ron is better able to configure the tools needed to monitor changes in the lakes to meet GLERL’s research goals and objectives. Frequently, this involves designing a new instrument or adapting an existing one designed for the ocean for freshwater use.

Ron compares the challenges in his work as a marine engineer to solving puzzles, as he expresses, “I am really inspired by the creative process of designing and putting together innovative monitoring tools that are efficient, reliable, economical, and functional in rugged conditions. Being reliable in the harsh environment of the Great Lakes is especially critical. If our desktop computer crashes, we can easily reboot it, but that’s not an option when the computer is located inside a buoy a few miles from shore on a stormy day.” Ron is also inspired by working as a team in MIL as he knows all too well, “no one person can do this type of work on their own— it takes a team effort, always.”

One important development that Ron has helped advance is NOAA GLERL’s Real-Time Environmental Coastal Observation Network (ReCON) buoys, expanding GLERL’s capacity to monitor the Great Lakes. In working with the MIL team, Ron helped build and maintain the ReCON network—a system of wireless Internet observation buoys positioned at coastal locations around the Great Lakes covering approximately 800 square miles. The system of buoys, powered by solar energy, collects meteorological (Met) data and also provides sub-surface measurements of chemical, biological, and physical conditions. ReCON buoys obtain on the water data in real-time that is accessible to the public and ensures the safety of user groups going out on the water, such as surfers, anglers and boaters, duck hunters, sailors, as well as researchers.  See slide show below for ReCON related images.

Muzzi on ReCON_-EMUTour-2013

Muzzi explains how the ReCON system is used to track meteorological conditions around the Great Lakes basin with real-time meteorological data, animations, and photographs available for each met station shown on the Great Lakes map above.  

Ron identifies one of the ongoing challenges in doing research on the Great Lakes is monitoring the five-lake system—massive in scope, covering  a surface area of 94,250 square miles with a volume of 5,439 cubic miles. While acknowledging this as a steep challenge, Ron discussed how newly developed technology, such as the Autonomous Unmanned Vehicles (AUVs), has increased GLERL’s capacity to monitor larger areas of the lakes more efficiently. GLERL also does more with cameras images and videos taken from aircrafts to increase monitoring capacity. Ron is optimistic that as robotics and imagery improves, we can continue to expand the scope of our research monitoring work.

Ron’s advice for young people interested in marine engineering harkens back to how he spent his childhood. “Young people need to experiment on their own, play around with science and technology kits, and get a good foundation in the basic sciences and mathematics. You may even consider exploring music.”  Ron plays the piano and organ as well as directing his church choir and strongly believes that his musical pursuits have transferred over to strengthening his engineering skills. “Designing requires a creative spirit which should be explored at a young age.” 

Lesson_Circuitry_Muzzi

Muzzi teaches a lesson to a group of elementary students visiting GLERL on electrical circuitry which included a group challenge exercise for our next generation of scientists/marine engineers.

Applyicaiton_Circuitry_Muzzi

In looking to the future of Great Lakes research, Ron believes that one of the most significant challenges we face is getting the research done with limited resources as well as keeping the focus to a manageable number of projects. He hopes that the pioneering spirit of GLERL’s scientists and engineers continues in the spirit of developing innovative instrumentation to monitor the Great Lakes. And as a society, we all must take responsibility in being good stewards of the lakes for generations to come.

This slideshow requires JavaScript.


Leave a comment

Exploring the diversity of native species with Great Lakes Water Life

From prehistoric-looking lake sturgeon to colorful crayfish, the Great Lakes are alive with thousands of remarkable native species. To document and celebrate the diversity of fauna native to the Great Lakes, NOAA-GLERL has partnered with US EPA and the Great Lakes Sea Grant Network to launch the new Great Lakes Water Life database: a comprehensive, accessible inventory of aquatic species found throughout the region.

Three researchers aboard a boat hold up a large lake sturgeon that is as long as they are tall.
Researchers hold a lake sturgeon, one of the many species native to the Great Lakes (photo courtesy of Todd Marsee, Michigan Sea Grant).

Great Lakes Water Life (GLWL) is designed to support environmental researchers and managers by hosting a broad range of ecological information and tools: identification guides for native species, records of rare or unfamiliar taxa, lists of expected species in a specific area, summaries of broad-scale biodiversity patterns, and more. This site is also available for public use to students, citizen scientists, and other Great Lakes residents who want to learn about native species in their area, providing new opportunities for outreach and education online.

“This user-friendly database captures the unique biological diversity of the Laurentian Great Lakes,” said Debbie Lee, Director of the NOAA Great Lakes Environmental Research Laboratory.  “The search function invites the curious to learn about the amazing water life native to the largest surface freshwater system on earth.”

A screenshot of the Great Lakes Water Life home page, featuring an about section, a search tool, additional resources, and a contribution portal.
The new Great Lakes Water Life landing page.

GLWL allows users to search for species by taxa, origin, domain, and broad geographic location. Each species result links to taxonomic information, a bibliography of references and sighting information, links into Barcode of Life DNA markers, and more. The database also includes links to other taxonomic keys and field guides to native species, information about the purpose and history of this project, and a user contribution portal where researchers can share new photos, sightings, and collection records to be added to the site.

A screenshot of the Great Lakes Water Life search results, showing several species of native fish.
Users can search for native species to learn more about taxonomic information, geographic location, DNA markers, and more.

This database builds on a previous project known as the “Great Lakes Waterlife Gallery,” originally created in 2002 in support of Sea Grant’s Great Lakes Fisheries Leadership Institute in partnership by NOAA-GLERL and the Great Lakes Sea Grant Network. 

Another NOAA-led regional database, the Great Lakes Nonindigenous Species Information System (GLANSIS), runs in parallel with GLWL to more comprehensively document the non-native aquatic species that have been introduced to the Great Lakes. Cross-linking the two systems helps GLANSIS to provide DNA information on non-native species and identify species that may be expanding their ranges, highlighting the value of the native species inventory to monitoring for and understanding the impact of aquatic invaders. Great Lakes invaders shouldn’t get all the press coverage, however — researchers hope that the Great Lakes Water Life database will help fellow scientists make informed management decisions and help the public get to know more about the unique native creatures that inhabit the Great Lakes.

To learn more about the Great Lakes Water Life database or contribute information, please visit the site or contact Rochelle.Sturtevant@noaa.gov.


Leave a comment

Special Two-Day Science Translation Session at IAGLR 2019

This June, fellow researchers from around the world will gather in Brockport, New York, on the shores of the Erie Canal for IAGLR’s 62nd annual Conference on Great Lakes ResearchHosted by The College at Brockport, State University of New York, the conference will feature four days of scientific sessions and speakers focusing on the theme Large Lakes Research: Connecting People and Ideas. Mark your calendars for June 10-14, 2019. You won’t want to miss it! 

During the conference there will be a special two-day session that highlights the importance of science translation.  The session, Beyond Peer Review: Why You Must Connect Your Science to Stakeholders (and how to do it), will consist of several components—17 formal presentations, a moderated panel discussion, a synthesis discussion with Q&A, as well as a Skills Café. Conference attendees are welcome to join us for any and all portions of this session. We hope to see you there!


Day 1 – Tuesday, June 11th

On Tuesday, the SciComm session will include 12 presentations and a panel moderated discussion with science communication thought leaders Peter Annin (Author), Andrea Densham (Shedd), Sandra Svoboda (DPTV) & TJ Pignataro (Buffalo News). The panelists will explore what they see happening now and what they think the future looks like for connecting people and ideas for large lakes research.

Tuesday Morning (Edwards Hall Room 103)

Tuesday Afternoon (Edwards Hall Room 103)

  • 1:40-3:20 pm – 5 presentations
  • 3:20-3:40 pm – Break
  • 3:40-5:20 pm – 4 presentations

Day 2 – Wednesday,  June 12th

On Wednesday, the SciComm session will continue with 5 formal presentations, and a synthesis discussion in the morning and a Skills Café in the afternoon.

Wednesday Morning (Edwards Hall Room 103)

  • 8:00-9:20 am – 3 presentations
  • 9:20-9:40 am – Break
  • 9:40-10:20 am – 2 presentations
  • 10:20-11:00 am – Interactive Synthesis Discussion and Question & Answer Session with Peter Annin (Author), Andrea Densham (Shedd), Sandra Svoboda (DPTV) & TJ Pignataro (Buffalo News)

Wednesday Afternoon (Edwards Hall Room 102)

  • 1:40 – 5:00 pm – Skills Café  –  This series of short interactive workshops will allow participants to practice a variety of skills that will make them more effective at communicating the “so what” of their research to lay – but key – audiences. 

The Panel: Hear the latest from science communication thought leaders!

Peter Annin, Author and Director of the Mary Griggs Burke Center for Freshwater Innovation

Peter Annin is the director of the Mary Griggs Burke Center for Freshwater Innovation and the author of The Great Lakes Water Wars, the definitive work on the Great Lakes water diversion controversy. Before coming to Northland College in 2015, Peter served as a reporter at Newsweek, the associate director of the Institute for Journalism and Natural Resources, and the managing director of the University of Notre Dame’s Environmental Change Initiative. He continues to report on the Great Lakes water diversion issue and has published a second edition of The Great Lakes Water Wars. 

Andrea Densham, Senior Director of Conservation and Advocacy at the Shedd Aquarium

Andrea Densham joined Shedd Aquarium in 2017 to lead the newly launched Conservation Policy and Advocacy team. Created to enhance Shedd’s position as a policy expert, Densham’s team develops and implements the institution’s policy goals. A government affairs thought leader and advisor, she brings more than 20 years of experience in not-for-profit management, strategic planning, research, and public policy and advocacy.

 

TJ Pignataro, Environmental Reporter for the Buffalo News

T.J. Pignataro has been a staff reporter for The Buffalo News for more than 20 years and the environment and weather reporter since 2013. He holds a juris doctor degree from SUNY Buffalo Law School and is completing his Certificate in Weather Forecasting this spring from the Pennsylvania State University’s Department of Meteorology and Atmospheric Science. TJ uses Twitter to convey Great Lakes environmental news, weather emergencies and Great Lakes science in plain language. 

Sandra Svoboda, Program Director, Great Lakes Now, Detroit Public Television

A nine-month stint with The Associated Press brought Sandra to Detroit … 29 years ago. She earned a bachelor’s in journalism from Indiana University and holds two master’s degrees from Wayne State, one in public administration and one in library and information science. The Special Libraries Association IT Division recognized her research with its 2018 Joe Ann Clifton Student Award for her paper on how Detroit voting dynamics can inform citizen engagement strategies. Sandra has worked for The (Toledo) Blade covering education/children’s issues, Detroit’s Metro Times and FEMA, where she deployed to Louisiana to help coordinate/communicate about community rebuilding/planning efforts for/after disasters. Sandra has won awards for broadcast, print, digital and community engagement work from the Michigan Associated Press, the Michigan Association of Broadcasters, Association of Alternative Newsweeklies, State Bar of Michigan, Michigan Press Association and Society of Professional Journalists-Detroit chapter, and Wayne State’s public administration program recognized her with the Distinguished Alumni Award in 2015 for her work covering Detroit’s bankruptcy. She has taught communications, writing, public policy, and political science at Wayne State University and the University of Michigan-Dearborn. As the Great Lakes region has always been her home Sandra has traveled between Minnesota and Tadoussac, Quebec, both on the water and on land. A competitive sailor, she races hundreds of miles each season on the Great Lakes, and once threw out a pitch at a Detroit Tigers game as recognition of her win with her team at the U.S. Women’s Match Racing Championship. She’s also eaten Asian carp as part of her coverage of invasive species.


The Skills Café: Get help communicating your research!

WHO: Do people’s eyes glaze over when you begin to talk about your research? Do you believe your research has the ability to make a difference, but you’re not sure how to get others excited about it too? Then this session is for you! For the researcher looking to improve their accessibility in attaining broader impacts; the early career professional seeking tips on how to set theirselves apart in a competitive market; the passionate scientist looking for ways to ensure their work makes an impact . . . the Skills Cafe is your opportunity to grow and try new things in a fun and supportive setting.

WHAT: This series of short interactive workshops will allow participants to practice a variety of skills that will make them more effective at communicating the “so what” of their research to lay—but key—audiences. Get tips on interacting with the media, hone your speaking skills, get feedback from a mock interview, and learn from the trials and tribulations of your peers!

WHEN: 1:40-5:00 pm on Wednesday, June 12.

WHERE: Edwards Hall, Room 102

For more information and a detailed schedule of activities stop by the NOAA exhibitor booth.


About IAGLR 2019: The 2019 International Association for Great Lakes Research Conference is hosted by The College at Brockport, State University of New York, June 10-14, 2019. The conference will feature four days of scientific sessions and speakers focusing on the theme “Large Lakes Research: Connecting People and Ideas.”

photo of building in water with skyline of city in backgroun


Leave a comment

NOAA and partners team up to prevent future Great Lakes drinking water crisis

A new video SMART BUOYS: Preventing a Great Lakes Drinking Water Crisis released by Ocean Conservancy describes how NOAA forecast models provide advance warnings to Lake Erie drinking water plant managers to avoid shutdowns due to poor water quality.

An inter-agency team of public and private sector partners, working with the Cleveland Water Department, are addressing drinking water safety for oxygen depleted waters (hypoxia). By leveraging NOAA’s operational National Weather Service and National Ocean Service forecast models and remote sensing for the Great Lakes, NOAA’s latest experimental forecast models developed by its Great Lakes Environmental Research Laboratory can predict when water affected by harmful algal blooms and hypoxia may be in the vicinity of drinking water intake pipes. Advance notice of these conditions allows water managers to change their treatment strategies to ensure the health and safety of drinking water.  

“Hypoxia occurs when a lot of organic material accumulates at the bottom of the lake and decomposes. As it decomposes, it sucks oxygen from the water, can discolor the water and allow for metals to concentrate,” explains Devin Gill, stakeholder engagement specialist for NOAA’s Cooperative Institute for Great Lakes Research, hosted at the University of Michigan.

Low dissolved oxygen on its own is not a problem for water treatment. However, low oxygen is often associated with a high level of manganese and iron in the bottom water that then leads to drinking water color, taste, and odor problems. In addition, the same processes that consume oxygen also lower pH and, if not corrected, could cause corrosion in the distribution system, potentially elevating lead and copper in treated water.

“Periodically, this water with depleted oxygen gets pushed up against the shoreline and the drinking water intakes pipes,” said Craig Stow, senior research scientist for NOAA’s Great Lakes Environmental Research Laboratory. “We have buoys stationed at various places and those guide our models to let us know when conditions are right for upwellings that would move this hypoxic water into the vicinity of the drinking water intakes.”

NOAA provides advanced warning of these events so that drinking water plant managers can effectively change their treatment strategies to address the water quality, which is a huge benefit in the water treatment industry.


For more information on NOAA GLERL’s harmful algal blooms and hypoxia research, visit www.glerl.noaa.gov/res/HABs_and_Hypoxia.


Leave a comment

The HAB season is over, but the work goes on

It’s nearly winter here in the Great Lakes—our buoys are in the warehouse, our boats are making their way onto dry land, and folks in the lab are working hard to assess observed data, experiments, and other results from this field season.

habtracker2018

This is a retrospective animation showing the predicted surface chlorophyll concentrations estimated by the Experimental Lake Erie HAB Tracker model during the 2018 season. Surface chlorophyll concentrations are an indicator of the likely presence of HABs. For more information about how the HAB Tracker forecast model is produced and can be interpreted, visit our About the HAB Tracker webpage.

The harmful algal bloom (HAB) season is also long over in the region. The final Lake Erie HAB Bulletin was sent out on Oct. 11, as the Microcystis had declined in satellite imagery and toxins decreased to low detection limits in samples. In the seasonal assessment, sent out by NOAA’s Centers for Coastal Ocean Science on Oct. 26, it was determined that the season saw a relatively mild bloom—despite its early arrival in the lake—and the bloom’s severity was significantly less than that which was predicted earlier in the season. These bulletins and outlooks are compiled using several models. Over the winter, the teams working on the models take what they learn from the previous season, and update their models for future use.

Back in the lab, the HABs team—researchers from both GLERL and the Cooperative Institute for Great Lakes Research (CIGLR)—will spend the winter analyzing data they collected through a variety of observing systems. This summer was packed with the use of new observing technologies, like hyperspectral cameras and the Environmental Sample Processor (in case you missed it, check out this fun photo story of the experimental deployment of a 3rd generation ESP). In addition, GLERL and CIGLR staff maintained a weekly sampling program program, from which scientists are analyzing and archiving samples and conducting experiments.

43447135081_b893240224_o.jpg

Aerial photograph of the harmful algal bloom in Western Basin of Lake Erie on July 2, 2018, (Photo Credit: Aerial Associates Photography, Inc. by Zachary Haslick). Pilots from Aerodata have been flying over Lake Erie this summer to map out the general scope of the algal blooms. In addition to these amazing photos, during the flyovers, additional images are taken by a hyperspectral imager (mounted on the back of the aircraft) to improve our understanding of how to map and detect HABs. The lead researcher for this project is Dr. Andrea VanderWoude, a NOAA contractor and remote sensing specialist with Cherokee Nation Businesses. For more images, check out our album on Flickr.

This lab work is super important for understanding the drivers of toxic algae in the Great Lakes. For instance, in a new study released this month, researchers looking at samples from previous years found that “ . . . the initial buildup of blooms can happen at a much higher rate and over a larger spatial extent than would otherwise be possible, due to the broad presence of viable cells in sediments throughout the lake,” according to the lead author Christine Kitchens, a research technician at CIGLR, who works here in the GLERL lab. This type of new information can be incorporated into the models used to make the annual bloom forecasts.

As you can see, our work doesn’t end when the field season is over.  In spring 2019, when the boats and buoys are back in the water and samples are being drawn from the lakes, researchers will already have a jump on their work, having spent the winter months analyzing previous years, preparing, and applying what they’ve learned to the latest version of the Experimental HAB Tracker, advanced observing technologies, and cutting-edge research on harmful algal blooms in the Great Lakes.