NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


1 Comment

A summer intern’s perspective on why diversity and inclusion is the way to go

17-07-20_Char'ManeRobinson_AC Model

By Char’Mane Robinson, NOAA EPP/MSI Scholar

 

My name is Char’Mane Robinson  and I’m working this summer at NOAA Great Lakes Environmental Research Laboratory (GLERL) as a NOAA Educational Partnership Program (EPP) with Minority Serving Institutes (MSI) Scholar. I will be receiving a BS in environmental science with an emphasis in natural resources at California State University, Monterey Bay (CSUMB). The NOAA EPP with MSI is a federal STEM (Science, Technology, Engineering, and Mathematics) educational program, preparing for diversity and inclusion in the workforce for NOAA and the NOAA mission-related enterprise. My program provides for two summer research experiences to undergraduate students from minority serving institutions. These summer research experiences were set up to help students further achieve their career goals through the development of enhanced academic discipline and professionalism needed for success as future NOAA employees.

My research here at GLERL has focused on modeling  the growth potential of Asian carp in Lake Michigan. I am working with guidance from Drs. Ed Rutherford (GLERL), Doran Mason (GLERL), Mark Rowe (Cooperative Institute for Great Lakes Research (CIGLR)), and Hongyan Zhang (CIGLR), Peter Alsip (CIGLR), and Henry Vanderploeg (GLERL).  This research experience is helping me to better understand how to use advanced software to make models that predict future environmental conditions used to inform management strategies for invasive species like Asian carp. Being new to modeling, it was important for me to have a great group of mentors who could teach me the fundamentals of using advanced programming software R to perform model calculations and then analysis. While it’s been a challenging project, I have learned so much, especially as I work on adjusting my model to get realistic output.

As  a NOAA EPP/MSI Scholar last summer, I worked in Silver Springs, Maryland analyzing polychlorinated biphenyls (PCBs) in the fish species from Cocos Lagoon, Guam. In addition to my research studies, I am a pivotal leader in my community, mentoring lower division students in applying for STEM research opportunities. I speak to underrepresented middle school students from the local community about the importance of going to college and about careers in the STEM fields. I bring to the EPP/MSI program my education, research, leadership, and a strong commitment to becoming a future NOAA employee.

One important observation I have noticed throughout my time as a college student and as an intern in the environmental sciences is the lack of minority representation in the scientific community. This includes underrepresentation of women, racial/ethnic minorities, native Americans, people with disabilities, among others. I think it’s important to work on cultivating a more diverse workforce which is in everyone’s best interests.  In recognizing the value of diversity and inclusiveness, NOAA has created educational programs to build a more diverse workforce.  NOAA education initiatives are actively seeking accomplished underrepresented students at the undergraduate and graduate levels to develop their workforce with equal representation.

As an EPP/MSI Scholar, I view diversity in the workforce as way to embrace each other’s differences and have an open discussion with each other, no matter who we are, where we come from, and what we do in our life experiences. I am incredibly grateful to NOAA’s EPP/MSI Undergraduate Scholarship Program for giving underrepresented students on the undergrad level, such as myself, the opportunity to work with NOAA scientists.

The world needs—now more than ever —scientists who not only conduct significant research but also can understand cultural differences to explain those results to the every single member of society.  I also strongly believe that we need to educate the public to become more environmentally aware and empower all citizens to support political initiatives that protect and preserve our planet for future generations to come.


Leave a comment

GLERL receives two RTAP awards for transitioning HABs and ice forecast models to an operational level 

GLCFS_nextgenf1

The 3rd generation NOAA GLERL Great Lakes Coastal Forecasting System (GLCFS) uses an unstructured grid (i.e., triangular shapes of adaptable size) to better model physical processes

GLERL’s Dr. Eric Anderson has recently been awarded funding from the Research Transition Acceleration Program (RTAP), placing two of GLERL’s FVCOM modeling projects on the fast track to transition from research to operations (R2O).  R2O is the pathway by which fundamental research is developed into a useful tool or product and implemented into an automated or operational environment accessible for use by the public. RTAP, a highly competitive grants program, prioritizes projects based on their ability to advance NOAA’s mission and benefit society with the ultimate goal of accelerating the transition of promising NOAA research to operations and applications.

Anderson’s research focuses primarily on hydrodynamics, using computer modeling to study how forcing conditions, such as meteorological (weather) events, affect the motion and energy of a body of water. In studying the physical nature of the Great Lakes in response to natural forces, he makes predictions related to currents, temperature, water levels, waves, harmful algal blooms (HABs), and ice characteristics. The RTAP awards will provide Anderson and his collaborative team of researchers the resources needed to advance the following two projects: “Implementation of a 3D HAB forecast model for Lake Erie using FVCOM” and “Implementation of the FVCOM-Ice model for the Great Lakes Operational Forecasting System (GLOFS).”  Project outcomes will support services such as safe drinking water, recreation, and navigation.

GLCFS_FVCOM vs POM grid

Notably, both forecast models are built upon the Finite Volume Community Ocean Model (FVCOM), an open-source community model that uses an unstructured grid (triangular shapes of adaptable size) to represent the Great Lakes and connecting channels (such as the coastline illustrated below) with increased grid resolution and model accuracy.  FVCOM solves the three-dimensional (3-D), integral form of the equations of motion.   This modeling approach also provides for an established framework for coupled modules (interconnection between biophysical components in the ecosystem, such as biological processes, currents, sediment, ice, etc.).  The seminal research paper explaining the structure and function of the FVCOM is provided in the Oceanography journal article, “An Unstructured Grid, Finite Volume Coastal Ocean Model FVCOM System” (Chen, et al., 2006) with further background on the FVCOM and its research application available on GLERL’s webpage, Great Lakes Coastal Forecasting: Next Generation.

HABcast122

Example of the HAB Tracker forecast showing surface extent and intensity of the bloom from 2015

The first of the RTAP awards listed above will enable Anderson with a group of NOAA partners to accelerate the implementation of a 3-D harmful algal bloom (HAB) forecast model by at least two years— providing decision makers with unprecedented real-time information on HAB extent, vertical distribution, and concentration. The experimental version of the model, known as the “HAB Tracker,” was first developed by GLERL in 2014 and has since been improved in collaboration with the National Ocean Service (NOS) National Centers for Coastal Ocean Science (NCCOS) as a tool that combines remote sensing and modeling to produce daily 5-day forecasts of bloom transport and concentration. The HAB Tracker is based on the 3-D FVCOM Lagrangian particle model, a sub-component of the FVCOM hydrodynamic model system currently being transitioned to operations. This transition will occur on NOAA’s high performance computing system for the NOAA production suite by NOS’ Center for Operational Oceanographic Products and Services (CO-OPS) as part of the next-generation Lake Erie Operational Forecasting System (LEOFS).

LakeErieIce.png

Example of the FVCOM-Ice model forecast of ice concentration from winter 2017

The second RTAP grant awarded to GLERL will facilitate incorporation of an ice model (FVCOM-Ice) in the Great Lakes Operational Forecasting System (GLOFS) by directly coupling it with the hydrodynamic FVCOM model.  RTAP funding will provide the personnel and infrastructure needed to support the development, validation, and implementation of the FVCOM coupled hydrodynamic-ice model and accelerate transition as part of the GLOFS upgrade. This transition to operations will provide the first-ever ice forecasts of extent/concentration, thickness, and velocity for the Great Lakes. The process will occur first for the Lake Michigan-Huron Operational Forecast System (LMHOFS) and then add to the existing Lake Erie Operational Forecast System (LEOFS). The coupled hydrodynamics-ice modeling systems for Lakes Michigan, Huron, and Erie will provide users with operational 120-hour forecast guidance of ice conditions, water temperature, currents, and water levels, updated four times per day during the winter as well as spring months.

Anderson recognizes the value of these RTAP awards by providing “the resources and personnel we need across Line Offices to validate and transition these models into operations, and avoid the so-called ‘valley of death’ between fundamental research and operational applications.”