NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


Leave a comment

NOAA Wave Glider Camaro Gathers Key Data During 25-Day Cruise in Lake Superior


The NOAA Great Lakes Environmental Research Laboratory (GLERL) and Michigan Technological University (MTU) Great Lakes Research Center recently teamed up on the deployment of a wave glider in Lake Superior. The chemical and biological data collected will help researchers understand more about the Lake Superior foodweb and also be used to validate satellite information.

Autonomous wave glider that was recently deployed into Lake Superior by the MTU Great Lakes Research Center. Credit: Sarah Atkinson/Michigan Tech

Information gathered by autonomous vehicles, such as the wave glider, helps fine-tune satellite algorithms (instructions that tell a satellite how to interpret what it’s seeing). Satellites are a great tool for observing the lakes, as they provide a broader view than that from the ground. Researchers create Great Lakes-specific algorithms because those used in the ocean often do not work well in the lakes. The data collected by the wave glider will help validate the algorithms and allow researchers to understand more about the lakes, such as primary productivity (See MTU’s blog post for more.)

A team of researchers from MTU deployed the wave glider on August 30, 2021 and it spent 25 days surveying the lake and collecting data. The plan is to make the data public through the National Centers for Environmental Information (NCEI) so that information can be used in many ways including model development.

Path of the wave glider deployed on August 30th, 2021 and recovered on September 22, 2021 off the eastern coast of the Keweenaw Peninsula, near Bete Grise.

“It is a privilege for the Great Lakes Research Center to collaborate with NOAA GLERL on the wave glider experiment in Lake Superior, a first of its kind,” said Andrew Barnard, director of Michigan Tech’s Great Lakes Research Center. “This project continues to build a strong partnership between our organizations to push the boundaries of autonomy and sensing technologies. These new technologies in the Great Lakes support a better understanding of the physical processes in the lakes and will directly result in improved management insight for policy makers.”

Steve Ruberg of NOAA GLERL is thrilled with the MTU partnership as it expands our ability to collect data throughout the lakes. “Uncrewed vehicles give us the persistent large spatial observational capability to get in situ observations that will allow us to validate Great Lakes remote sensing.”

Left to right: Michigan Tech R/V Agassiz Jamey Anderson, assistant director of marine operations, Michigan Tech Great Lakes Research Center; Tim Havens, incoming director of the Great Lakes Research Center (January 2022) and John Lenters, associate research scientist at the Great Lakes Research Center ready the wave glider for deployment. Credit: Sarah Atkinson/Michigan Tech

This research project is a part of the Environmental Protection Agency’s Cooperative Science and Monitoring Initiative (CSMI). Federal and state agencies, tribal groups, non-governmental organizations and academic researchers from the United States and Canada team up yearly to assess conditions in one of the five Great Lakes. The survey focuses on a series of research areas that are tailored to the unique challenges and data needs associated with each lake.


Leave a comment

From safe drinking water to sustainable fisheries, NOAA GLERL’s Experimental Lake Erie Hypoxia Forecast is even more useful than anticipated

Four years ago, NOAA’s Great Lakes Environmental Research Laboratory (GLERL) and the Cooperative Institute for Great Lakes Research (CIGLR) began providing an Experimental Lake Erie Hypoxia Forecast Model to warn stakeholders of low-oxygen upwelling events that can cause water quality problems for over 2 million residents of northern Ohio. Now in its fifth year, this forecast model has turned out to serve additional purposes that NOAA’s scientists hadn’t even considered – including maintaining sustainable fisheries and solving a smelly mystery!

Water intake crib off the coast of Lake Erie in Cleveland, Ohio. By forecasting potential hypoxic upwelling events that could impact water quality, NOAA GLERL’s Experimental Hypoxia Forecast Model helps drinking water plant managers be prepared to adjust their treatment processes as needed.

Providing critical warnings to keep drinking water safe

Hypoxia – a state of low oxygen – occurs in the deep waters of Lake Erie’s central basin in July through September of most years. Low-oxygen water is an unfavorable habitat for fish, and may kill bottom-dwelling organisms that provide food for fish. While the hypoxic water generally stays near the lake floor, changes in wind and water currents can create upwelling events, in which this zone of low oxygen is brought to the surface along the coast.

Once it creeps into shallower parts of the lake, hypoxic water can upset drinking water treatment processes at water intakes along the shoreline. Hypoxic upwelling events cause rapid changes in water quality variables such as temperature, pH, dissolved organic matter, iron, and manganese. To maintain the quality of treated water, plant managers must adjust treatment in response to these changes. NOAA GLERL’s Experimental Hypoxia Forecast Model provides several days of advance notice that water quality is changing, so that drinking water plant managers can be prepared to adjust their treatment processes as needed.

This infographic from NOAA GLERL describes how hypoxia occurs in large bodies of water like the Great Lakes.

Plot twist: Benefiting more than just our water supply

NOAA GLERL’s Experimental Lake Erie Hypoxia Forecast has proven to be incredibly successful in its original goal – but our scientists were surprised to learn that its usefulness didn’t stop there. Recent stakeholder interviews conducted by CIGLR Stakeholder Engagement Specialist Devin Gill revealed that, in addition to helping manage the drinking water treatment process, the forecast has also become an unexpectedly vital tool for managing Lake Erie’s fisheries. 

One agency that makes use of the experimental hypoxia forecast is the Ohio Department of Natural Resources (DNR). The Ohio DNR is responsible for generating population estimates for Lake Erie’s yellow perch and walleye – estimates that ultimately help determine official catch limits to maintain the lake’s sustainable fisheries. 

“Large aggregations of fish may seek refuge at the edges of the hypoxic zone,” says Ann Marie Gorman, a fisheries biologist with the Ohio DNR’s Fairport Harbor Fisheries Research Station. “Our office tracks the location of the lake’s cold bottom water using the NOAA GLERL Hypoxia Forecast Model, and we may modify the timing of some of our surveys to minimize the potential impact of hypoxia on the results. Overall, the NOAA GLERL Hypoxia Forecast Model has become an integral tool for our survey planning.”

Understanding fish behaviors in response to hypoxia is important to conducting accurate population surveys of Lake Erie’s fish species. The ability of NOAA GLERL’s hypoxia forecast to warn fisheries managers of potential survey bias from these hypoxic events helps to save time, money, and energy that may have otherwise been used to conduct unsuccessful trawling surveys in hypoxic zones.

NOAA GLERL’s Experimental Hypoxia Forecast Model helps to guide the planning of trawling surveys like this one conducted by the Ohio Department of Natural Resources. Consulting the forecast helps the Ohio DNR to minimize the potential impact of hypoxia on survey results, which are used to set catch limits that keep Lake Erie’s fisheries sustainable. Photo credit: Ohio Department of Natural Resources.

Richard Kraus, a supervisory research fish biologist with the United States Geological Survey (USGS) Great Lakes Science Center Field Station in Ohio, also uses the experimental hypoxia forecast for his work with Lake Erie’s fisheries. Kraus explains that in Lake Erie, several cold-water fish species rely on finding refuge in colder, deeper waters of the lake – waters that are not impacted by warmer summer air temperatures. However, the presence of hypoxic zones in these deeper waters can impact how much refuge is available for these fish. As hypoxia reduces refuge habitats for cold-water species, chronic effects on growth and reproduction may develop, and in severe circumstances fish kills sometimes occur. The NOAA GLERL Hypoxia Forecast Model is instrumental in predicting where these potential ecosystem impacts could occur, in turn helping fisheries managers determine sustainable catch limits for each fish species in question.

The experimental forecast was also found to be useful to commercial and recreational fishers, who use the forecast to gauge the distribution of yellow perch in relation to hypoxic zones. Fishers can utilize the forecast on a daily basis to determine where to launch their boats, and where to search for aggregations of fish, depending on the hypoxia forecast for that day.

Plus, it’s not just routine fisheries management and recreation that the Experimental Hypoxia Forecast helps improve. In early September, it helped solve the mystery of a strange, foul smell coming from Lake Erie near Cleveland, Ohio, and fish kills associated with it. These phenomena resulted in many public inquiries regarding suspected gas leaks or pollutant spills. Thanks to the forecast, public officials knew that an upwelling of hypoxic water had recently occurred, likely carrying sulfur and nitrogen compounds that caused the stench, and were able to quickly eliminate other possible causes.

Half a decade in the making

Since it began in 2017, this NOAA project has grown into much more than just a computer model. The Experimental Lake Erie Hypoxia Forecast model was developed as a five-year project (2017-2021) with funding from NOAA’s Coastal Hypoxia Research Program, and is an extension of the Lake Erie Operational Forecasting System at NOAA’s Center for Operational Oceanographic Products and Services. Co-led by NOAA GLERL research scientists Drs. Mark Rowe and Craig Stow, and CIGLR’s Dr. Casey Godwin, project scientists provide an email update to public water systems, fisheries managers, and other stakeholders ahead of likely hypoxic events that contains links to the experimental forecast website and other useful NOAA webpages.

Map from the NOAA GLERL Experimental Lake Erie Hypoxia Forecast Model showing predicted change in Lake Erie temperature (top) and dissolved oxygen (bottom) during a three-day hypoxic upwelling event from August 31 to September 2, 2021.

Partners on this project include Ohio public water systems (including the cities of Cleveland and Avon Lake), NOAA’s National Ocean Service, and the Great Lakes Observing System. Special thanks to Devin Gill from the Cooperative Institute for Great Lakes Research for contributing stakeholder interview findings for this article.


Leave a comment

New wave buoy will provide data to support wave and flood forecasting on Lake Champlain

The NOAA Great Lakes Environmental Research Laboratory (GLERL) and partners recently deployed a buoy in Lake Champlain that will measure the lake’s wave heights to assess the accuracy of a new experimental model for the lake. This is part of a five-year NOAA GLERL project that will improve public safety on Lake Champlain by contributing to flood preparedness and response around the shores of the lake. Wave conditions are critical to public safety both for recreational and commercial activities on the lake – such as for boats, harbors, and beaches – but also for predicting coastal flood impacts at the shoreline where waves can run up and significantly impact infrastructure.

Left: Newly deployed NOAA buoy in Lake Champlain. Credit: University of Vermont FEMC staff. Top right: NOAA GLERL partners at the University of Vermont’s Forest Ecosystem Monitoring Cooperative (FEMC) deployed the buoy on Lake Champlain in May 2021. Credit: University of Vermont FEMC staff. Bottom right: Sunset on Lake Champlain. Credit: Dan Titze, CIGLR.

The project is a major collaborative effort by bi-national, federal, and university partners of NOAA GLERL. Partners at the University of Vermont’s Forest Ecosystem Monitoring Cooperative (FEMC) deployed the seasonal buoy in May, and the Coastal Data Information Program (CDIP) at the University of San Diego Scripps Institute of Oceanography receives the data, manages its quality control, and posts it to NOAA’s National Data Buoy Center (NDBC) website. Researchers at the Cooperative Institute for Great Lakes Research (CIGLR) are currently leading the development of a wave model for Lake Champlain, which is providing experimental forecasts on the GLERL website.

The buoy is located in the middle of the lake near Schuyler Reef, where it will remain until late fall, and is collecting wave height observations that will be used to validate NOAA’s WAVEWATCH III model for Lake Champlain. The experimental model’s output data will be compared to the buoy’s observed data, which will help scientists assess how well the model performs.

Location of the new NOAA Lake Champlain wave buoy, depicted by a yellow diamond. Map credit: NOAA National Data Buoy Center.

The buoy’s environmental data can be found on the CDIP website, and on the buoy’s page on the NOAA NDBC website. The buoy and the experimental wave model will be a helpful new tool for the region’s National Weather Service Weather Forecast Office in Burlington, Vermont, which provides lake forecasts including wave data to mariners in the region.

In addition to regional weather forecasters and local mariners, this buoy’s data will also be useful to emergency managers in the counties and cities around Lake Champlain and the Richelieu River, as well as the NOAA National Centers for Environmental Prediction which will transition the WAVEWATCH III model to operations.

This project is funded by the International Joint Commission’s Lake Champlain-Richelieu River (LCRR) Study Board. The International Joint Commission (IJC) is a bi-national organization established by the governments of the United States and Canada under the Boundary Waters Treaty of 1909. It oversees activities affecting the extensive waters and waterways along the Canada–United States border. The IJC’s LCRR Study Board was created in 2016 to undertake a study of the causes, impacts, risks, and potential solutions to flooding in the LCRR basin.


Leave a comment

Looking back: The ups and downs of Great Lakes ice cover in 2021

Ice formations cover a pier on the Lake Michigan shoreline in Holland, MI. February 27, 2021. Credit: Clarice Farina.

It’s no secret that the Great Lakes had a wild ride in terms of ice cover this past winter. From a slow start that led to near-record low ice cover in January, to the sudden widespread freeze just a few weeks later, here’s a look back at how ice cover on the lakes has fluctuated during the 2020-2021 ice season.

As we highlighted in our last blog post on historic ice data, January 2021 had the second-lowest overall Great Lakes ice cover on record since 1973 (with the very lowest being January 2002). For all five individual lakes, January 2021 was in the top five lowest ice-cover Januarys since 1973.

This graph shows average Great Lakes ice cover for the month of January every year from 1973 to 2021, organized by lowest ice cover (far left) to highest ice cover (far right). Credit: NOAA GLERL.

Starting out at 10.65% on February 1st, ice cover rose dramatically over the next three weeks with the region’s extreme cold weather. Growing quickly and steadily, total Great Lakes ice cover finally topped out at 45.84% on February 19th. But with air temperatures warming back up shortly afterwards, this spike was short-lived. Within a week it was back down to around 20% and continued to taper off, falling below 1% on April 3rd and reaching 0.1% on April 20.

This graph shows Great Lakes ice cover in 2021 (black line) compared to the historical average ice cover from 1973-2020 (red line). Credit: NOAA GLERL.

This Winter vs. The Long-Term Average

While all five lakes were far below their January average, each one did something a little different during February, when compared to its 1973-2020 average. The following graphs show this winter’s ice cover (black line) vs. the 1973-2020 average (red line) for each lake.⁣

Lake Erie ice cover jumped dramatically up to 81% in the second week of February, well above its average seasonal peak of around 65%. It stayed above 75% for about two weeks until falling back down below its average at the beginning of March.


Lake Michigan ice cover increased steadily throughout February, with its highest percentage being 33% on February 18th — only briefly staying above its average for that time period. It dropped off quickly the following week, then decreased gradually throughout March.

Lake Superior spent about a week in mid-February above its average ice cover for those days, peaking at about 51% on February 19th. Similar to Lake Michigan, it only stayed above its average for a short interval before rapidly falling back down under 20%.

Lake Ontario ice cover took a while to ramp up, staying below 10% until mid-February. It reached maximum ice cover on February 18th, topping out at about 21% – slightly higher than its average for that day.


Lake Huron was the only lake that did not reach above-average ice cover for the entire winter. Its peak ice cover was 48% on February 20th, which was about the same as its average for that time of year.

Melting into Spring

Throughout March, ice cover on all five lakes continued to decrease steadily, with the exception of a spike in ice cover around the second week of the month likely due to fluctuations in air temperature. For Lakes Erie and Ontario, this short-lived jump was enough to get them back up near their average early March ice cover for a few days. 

As for the timing of each lake’s peak 2021 ice cover compared with the average, Lakes Erie, Michigan, Huron, and Ontario all peaked later than their average, while Lake Superior is the only one that peaked earlier than its average.

Ice covers the Lake Huron shoreline in Oscoda, MI on February 15, 2021. Credit: G. Farina, NOAA GLERL.

This winter’s maximum seasonal ice cover of 45.8% is just 7.5% less than the long-term average of 53.3%. While it’s below the average, it’s still more than double the 2020 seasonal maximum of 19.5% ice cover, but is just over half the 2019 seasonal maximum of 80.9%. With so much year-to-year variability, forecasting ice cover each year can be incredibly difficult. NOAA GLERL’s experimental ice forecast, updated in mid-February, predicted Great Lakes ice cover in 2021 to peak at 38% – not too far off from what it really was. NOAA GLERL continues to analyze both current and historical data to refine the ice forecast model, working to actively improve our experimental Great Lakes ice forecast each year.

This graph shows annual maximum ice cover on the Great Lakes each year from 1973 to 2021. Credit: NOAA GLERL.

For more on NOAA GLERL’s Great Lakes ice cover research and forecasting, visit our ice homepage here: https://go.usa.gov/xsRnM⁣

⁣Plus, access these graphs plus more Great Lakes CoastWatch graphs & data here: https://go.usa.gov/xsRnt⁣

Flat, jagged pieces of ice float in Lake Huron near Oscoda, MI on February 15, 2021. Credit: G. Farina, NOAA GLERL.


2 Comments

Five decades of Great Lakes ice cover data – and where to find it

Understanding the major effects of ice on the Great Lakes is crucial. Ice cover impacts a range of societal benefits provided by the lakes, from hydropower generation to commercial shipping to the fishing industry. The amount of ice cover varies from year to year, as well as how long it remains on the lakes. With almost five full decades of ice data to look at, GLERL scientists are observing long-term changes in ice cover as a result of climate change. Studying, monitoring, and predicting ice coverage on the Great Lakes plays an important role in determining climate patterns, lake water levels, water movement patterns, water temperature structure, and spring plankton blooms.

Maximum ice cover on the Great Lakes every year from 1973 to 2018. Credit: NOAA GLERL.

NOAA GLERL has been exploring the relationships between ice cover, lake thermal structure, and regional climate for over 30 years through the use of historical model simulations and observations of ice cover, surface water temperature, and other variables. Weekly ice cover imaging products produced by the Canadian Ice Service (CIS) started in 1973. Beginning in 1989, the U.S. National Ice Center (NIC) produced Great Lakes ice cover charts that combined both Canadian and U.S. satellite imagery. Today, these products are downloaded and processed at GLERL by our CoastWatch program, a nationwide NOAA program within which GLERL functions as the Great Lakes regional node. In this capacity, GLERL uses near real-time satellite data to produce and deliver products that support environmental decision-making and ongoing research. While the Great Lakes CoastWatch Program is a great resource for near real-time ice cover data, historical data is just as important – and that’s where GLERL’s Great Lakes Ice Cover Database comes in. Originally archived by GLERL through the National Snow & Ice Data Center, the Great Lakes Ice Cover Database houses data that dates back to 1973 and continues to be updated daily during the ice season every year.

Ice caves on Lake Michigan’s Glen Haven beach in 2005. Credit: National Parks Service.

Even though the CIS and NIC are the ones who actually collect Great Lakes ice cover data, GLERL plays the important role of re-processing this ice data into more accessible file formats, making it readily usable to anyone who needs it. Agencies and organizations that have used ice cover data from GLERL in the past include the NASA Earth Observatory, U.S. Army Corps of Engineers, U.S. Coast Guard, and National Geographic. Types of data requested might include historic minimum and maximum ice coverage for certain regions or lakes, or dates of the first and last ice cover in a region from year to year. This information can be helpful for managers in industries like energy production and commercial shipping.

This graph shows annual maximum ice coverage on the Great Lakes every year from 1973 to 2020. The red dashed line marks the long-term average maximum ice cover of 53.3%. Credit: NOAA GLERL.

GLERL scientists can also use this historic ice cover data to analyze how current ice cover conditions compare with previous years. For example, here’s how the ice cover during January 2021 stacks up against data for past Januarys:

  • Lake Michigan and the five-lake average had their second lowest January ice cover (with January 2002 being the first lowest).
  • The other lakes are all in the top five lowest ice cover for the month of January.
  • Six out of ten of the Januarys with the lowest ice cover have occurred during the last decade for the five-lake average (though 2014 was fourth highest January ice cover).
This graph shows average Great Lakes ice cover for the month of January every year from 1973 to 2021, organized by lowest ice cover (far left) to highest ice cover (far right). Credit: NOAA GLERL.

GLERL is also working to make this data more user-friendly for anyone looking to utilize it. This recent paper from GLERL and the Cooperative Institute for Great Lakes Research (CIGLR) describes the scientists’ efforts to standardize two existing formats of historic ice cover data. The authors explain that “technology has improved and the needs of users have evolved, so Great Lakes ice cover datasets have been upgraded several times in both spatial and temporal resolutions.” The paper documents the steps the authors took to reprocess the data in order to make it more consistent and accessible, which ultimately makes it easier for users to study long-term trends.

Timeline of ice chart evolution and frequency, from the research paper described above (Yang et al 2020). Credit: Ting-Yi Yang, Cooperative Institute for Great Lakes Research.

Whether you’re looking for decades of Great Lakes ice data or just a few days, GLERL’s got you covered! Looking for more Great Lakes ice cover information? Visit our ice cover homepage here.

MODIS satellite image of ice cover on the Great Lakes, March 16, 2014. Credit: NOAA Great Lakes CoastWatch.


Leave a comment

Eight years of Great Lakes underwater glider data now available to the public

CIGLR’s Russ Miller deploying glider in Lake Huron, June 2017

NOAA Great Lakes Environmental Research Laboratory (GLERL) and the Cooperative Institute for Great Lakes Research (CIGLR) recently posted eight years’ worth of Great Lakes autonomous underwater vehicle (AUV), or “glider data ”  on NOAA’s Integrated Ocean Observing System (IOOS) Underwater Glider Data Assembly Center (DAC) map. The map is a collaborative effort and includes current and historical glider missions dating back to 2005 from around the planet. This data is useful to government agencies, researchers, environmental managers, and citizens who use Great Lakes data for better understanding the characteristics of Great Lakes water.

CIGLR glider just before a deployment in Lake Michigan at the NOAA GLERL Lake Michigan Field Station in Muskegon, MI.

The collection and analysis of this data is a close collaboration between NOAA GLERL, CIGLR and partner institutions. CIGLR owns and operates the glider, and it is deployed using NOAA GLERL vessels. Data managers and researchers from both organizations are working together to make this data as useful and accessible as possible. This cooperative project, which has been funded by the Great Lakes Observing System (GLOS; a part of the IOOS program), aims to support science, public safety, and security through the use of unmanned systems (UxS).

Glider Tech Specs

This glider is buoyancy-driven, meaning it controls its depth in the water by inflating and deflating a “bladder” that in turn makes it sink or float. It typically operates at around 30 meters (100 feet) below the lake surface, but can go as deep as 200 meters (650 feet) when needed. While the glider is able to work on it’s own, scientists wirelessly communicate with it regularly throughout its journey when it’s at the surface. It’s programmed to resurface regularly for check-ins, so we always know right where it is and we can even instruct it to change its mission path if necessary. It may only travel an average of 1 kilometer (0.6 miles) per hour, but its missions can last up to 60 days and provide us with amazing data sets to help answer questions about the Great Lakes ecosystem. Check out the video below from NOAA’s Ocean Service and visit this fact page for more on how the glider works.

The importance of data collection

With every deployment, the glider measures the water’s physical properties such as temperature, mineral content, pressure, and salinity. (Yes, even the Great Lakes have a tiny bit of salinity!) It also measures biological properties such as chlorophyll fluorescence and concentrations of dissolved organic matter, which indicate the region’s level of primary biological productivity (the amount of organic matter produced by phytoplankton in the water). Phytoplankton might be tiny, but their productivity is extremely important to the lakes’ ecosystems because it provides nutrients to the rest of the food web.

CIGLR glider floating just below the surface of the water.

When you piece together all these day-to-day measurements, you can use them to study seasonal changes such as movement of the thermocline – or steep temperature gradient in the lake – which can impact the rate of biological activity in the spring and summer. The size and intensity of spring algal blooms and occasional “whiting events” (accumulations of calcium carbonate particles in the water due to increased biological productivity) are other examples of seasonal biological phenomena the glider can observe. The glider collects high-quality data efficiently and cost-effectively, day and night in all weather conditions, ultimately allowing us to collect more data in a shorter amount of time than is possible with traditional ship-based methods. The robust datasets it gives us advance our understanding of Great Lakes processes on short-term, seasonal, and annual timescales — and lay a foundation for observing changes in the lakes over several decades.

This map shows NOAA GLERL/CIGLR underwater glider pathways in southern Lake Michigan, available on NOAA’s Integrated Ocean Observing System (IOOS) Underwater Glider Data Assembly Center map.  A long-term series of Lake Michigan observations in the southern basin of Lake Michigan began in 2012, criss-crossing between Muskegon, Milwaukee. This complements data collected by the NOAA National Data Center Station 45007, as well as temperature string in the southern basin of the lake,  connecting the observations of NOAA GLERL and University of Wisconsin-Madison. 

Glider paths shown on the maps include all deployment from 2012-2019. These paths expand observations collected by Federal and University research vessels in the same regions of the Great Lakes, through the use of other tools, such as NOAA GLERL’s Plankton Survey System (PSS) and Multiple Opening and Closing Net and Environmental Sampling System (MOCNESS). It is important to have a long period of observations from many types of collection across the lakes to better understand how things like water temperature at different depths, inputs from rivers, and seasonal changes to other characteristics of the water affect the ecosystem.This information is useful in understanding the impacts of invasive species, harmful algal blooms, and our changing climate.

This map shows NOAA GLERL/CIGLR underwater glider pathways in the Great Lakes, available on NOAA’s Integrated Ocean Observing System (IOOS) Underwater Glider Data Assembly Center map. In 2013, 2015, 2017, and 2018, glider deployments were chosen to complement ship- and glider-based observations of the Environmental Protection Agency (EPA), NOAA, United States Geological Survey (USGS), and Coordinated Science and Monitoring Initiative (CSMI) in Lakes Michigan, Ontario and Huron.  Lake Erie is too shallow for effective use of this glider, and Lake Superior has been monitored by EPA and University of Minnesota Large Lakes Observatory gliders.

Future deployments and collaboration

Planning is currently underway for future missions in the Great Lakes and potential applications for the glider’s wide variety of data. The glider will also be used this year on Lake Michigan for research and observations during the 2020 Cooperative Science and Monitoring Initiative (CSMI), a binational effort to coordinate science and monitoring activities in one of the five Great Lakes each year. This year’s CSMI research will likely use the glider to gain a better understanding of water quality in the lake’s nearshore regions – the area in the water from where waves begin to break, up to the lowest water point on the beach. With great partners like CIGLR and GLOS, the future is bright for NOAA’s underwater glider explorations.


1 Comment

Sinkhole Science: Groundwater in the Great Lakes

If you followed our fieldwork last summer, you probably remember hearing about our research on the fascinating sinkholes and microbial communities that lie at the bottom of northern Lake Huron off the coast of Alpena, MI. Now you can experience this research as a short film!

NOAA GLERL has partnered with Great Lakes Outreach Media to create a short film entitled Sinkhole Science: Groundwater in the Great Lakes. It was recently featured on Detroit Public Television’s Great Lakes Now program as well as the Thunder Bay National Marine Sanctuary’s International Film Festival. 

In the film, you’ll learn how NOAA GLERL’s Observation Systems and Advanced Technology (OSAT) branch studies how these sinkholes impact the water levels and ecosystems of the Great Lakes. GLERL’s OSAT Program Leader Steve Ruberg explains the high-tech gadgets involved in this research, including a remotely operated vehicle (ROV), a tilt-based current sensor, and temperature strings to determine vertical movement of groundwater entering the lakes through the sinkholes.

Hit “play” to dive into the exciting world of GLERL’s sinkhole science!

Researchers from NOAA GLERL’s Observation Systems and Advanced Technology team set out on the R/V Storm to study sinkholes on the floor of northern Lake Huron off the coast of Alpena, MI. Photo: Great Lakes Outreach Media
Researchers on NOAA GLERL’s R/V Storm deploy a remotely operated vehicle (ROV) to observe sinkholes at the bottom of Lake Huron off the coast of Alpena, MI. Photo: Great Lakes Outreach Media
NOAA GLERL’s OSAT Program Lead Steve Ruberg and Instrument Specialist Steven Constant observe a sinkhole via live video feed from the ROV. Photo: Great Lakes Outreach Media
NOAA GLERL Marine Engineer Kyle Beadle controls the ROV in order to observe sinkholes from the R/V Storm. Photo: Great Lakes Outreach Media
NOAA GLERL Instrument Specialist Steven Constant and Vessel Captain Travis Smith monitor the ROV as it dives beneath the surface to observe a sinkhole. Photo: Great Lakes Outreach Media


Leave a comment

The HAB season is over, but the work goes on

It’s nearly winter here in the Great Lakes—our buoys are in the warehouse, our boats are making their way onto dry land, and folks in the lab are working hard to assess observed data, experiments, and other results from this field season.

habtracker2018

This is a retrospective animation showing the predicted surface chlorophyll concentrations estimated by the Experimental Lake Erie HAB Tracker model during the 2018 season. Surface chlorophyll concentrations are an indicator of the likely presence of HABs. For more information about how the HAB Tracker forecast model is produced and can be interpreted, visit our About the HAB Tracker webpage.

The harmful algal bloom (HAB) season is also long over in the region. The final Lake Erie HAB Bulletin was sent out on Oct. 11, as the Microcystis had declined in satellite imagery and toxins decreased to low detection limits in samples. In the seasonal assessment, sent out by NOAA’s Centers for Coastal Ocean Science on Oct. 26, it was determined that the season saw a relatively mild bloom—despite its early arrival in the lake—and the bloom’s severity was significantly less than that which was predicted earlier in the season. These bulletins and outlooks are compiled using several models. Over the winter, the teams working on the models take what they learn from the previous season, and update their models for future use.

Back in the lab, the HABs team—researchers from both GLERL and the Cooperative Institute for Great Lakes Research (CIGLR)—will spend the winter analyzing data they collected through a variety of observing systems. This summer was packed with the use of new observing technologies, like hyperspectral cameras and the Environmental Sample Processor (in case you missed it, check out this fun photo story of the experimental deployment of a 3rd generation ESP). In addition, GLERL and CIGLR staff maintained a weekly sampling program program, from which scientists are analyzing and archiving samples and conducting experiments.

43447135081_b893240224_o.jpg

Aerial photograph of the harmful algal bloom in Western Basin of Lake Erie on July 2, 2018, (Photo Credit: Aerial Associates Photography, Inc. by Zachary Haslick). Pilots from Aerodata have been flying over Lake Erie this summer to map out the general scope of the algal blooms. In addition to these amazing photos, during the flyovers, additional images are taken by a hyperspectral imager (mounted on the back of the aircraft) to improve our understanding of how to map and detect HABs. The lead researcher for this project is Dr. Andrea VanderWoude, a NOAA contractor and remote sensing specialist with Cherokee Nation Businesses. For more images, check out our album on Flickr.

This lab work is super important for understanding the drivers of toxic algae in the Great Lakes. For instance, in a new study released this month, researchers looking at samples from previous years found that “ . . . the initial buildup of blooms can happen at a much higher rate and over a larger spatial extent than would otherwise be possible, due to the broad presence of viable cells in sediments throughout the lake,” according to the lead author Christine Kitchens, a research technician at CIGLR, who works here in the GLERL lab. This type of new information can be incorporated into the models used to make the annual bloom forecasts.

As you can see, our work doesn’t end when the field season is over.  In spring 2019, when the boats and buoys are back in the water and samples are being drawn from the lakes, researchers will already have a jump on their work, having spent the winter months analyzing previous years, preparing, and applying what they’ve learned to the latest version of the Experimental HAB Tracker, advanced observing technologies, and cutting-edge research on harmful algal blooms in the Great Lakes.


1 Comment

Photo story: Using an AUV to track algae in Lake Erie

In late July and early September, during the peak of the 2018 harmful algal bloom in the Western Basin of Lake Erie, NOAA GLERL, NOAA National Centers for Coastal Ocean Science (NCCOS), NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) and CIGLR researchers teamed up with a group of scientists and engineers from the Monterey Bay Research Institute (MBARI). Their mission: to test how well a third-generation environmental sample processor (3GESP), mounted inside a long-range autonomous underwater vehicle (LRAUV), can track and analyze toxic algae in the Western Basin of Lake Erie. You can read more about the purpose of this project in this great news story by MBARI’s Kim Fulton-Bennett.

Below is a photo story showing all (well, much) of the hard work that went into this test deployment.

First, the new gear had to be shipped from California to the GLERL laboratory in Ann Arbor, Michigan.

 

ESP3-b (1)

Upon arrival, Jim Birch, Director of the MBARI SURF (Sensors Underwater Research of the Future) Center, & Bill Ussler, MBARI biogeochemist, got straight to work in GLERL’s Marine Instrumentation Lab.

Image from iOS (6)

The inside of the 3G ESP has a lot of moving parts. Since this is the first time the team is testing it in freshwater, before it can go out, everything needs to be fine-tuned to work in a variety of conditions in Lake Erie (more on that later.)

So. Many. Moving. Parts.

 

Image from iOS (7)

Once everything is in working order, the 3GESP gets inserted into an LRAUV or long-range autonomous underwater vehicle (the torpedo-looking thing). This gives the 3GESP the ability to move around in the water all by itself once researchers have set parameters for it. The team has named this particular vehicle, Makai, which is Hawaiian for “toward or by the sea.” Seems appropriate! That’s Brian Kieft, MBARI software engineer, on the right. He plays a crucial role in making sure Makai does her job.

IMG-1263

All hands on deck for a few more tweaks.

testing_b

Once everything is installed tightly, helium is added into the canister to check for leaks. CIGLR engineer, Russ Miller, is working with Jim to fill it up.

Now, the team is ready to head out to Lake Erie. Here’s where things start to get exciting!

 

20180822_134836.jpg

Before the team sets Makai free to track the algal bloom in the Western Basin of Lake Erie, they must first check her ballast and trim. This is especially important for such a shallow lake (relative to where the team has been testing this technology in the deep canyons of of Monterey Bay off the coast of California.)

20180822_133254

Brian has to do all of the hard work.

Image from iOS (8)

Because, science.

Image from iOS (11)

Time to load Makai onto the NOAA vessel, which is stationed in La Salle, Michigan. Captain Kent Baker, a contractor with NOAA, is in the background operating the crane. Kent takes NOAA and CIGLR researchers and technicians out to bi-weekly sampling stations, helps deploy buoys and other instrumentation, and is at the ready for pretty much anything that needs to happen in Lake Erie.

onboat

Once she’s all settled onto the boat, the team takes Makai to the first deployment location.

Screen Shot 2018-08-23 at 12.55.24 PM

The inaugural deployment was set to match up with the bi-weekly sampling stations.

inwater

Look closely and you’ll see Makai off on her way!

Makai and the team spent nearly two weeks tracking, sampling, adjusting, and learning about using this technology to track algal toxins in Lake Erie.

Image from iOS (1) copy

The team used the images from GLERL’s Experimental Lake Erie Harmful Algal Bloom (HAB) Tracker to determine where to send Makai.

Bloom Edge

Then, they would determine how many samples to take, and program her to go to specific waypoints.

Remember when we said this Lake Erie mission will be different than the ones the team has performed in Monterey Bay? Well, here’s one example of how.

20180826_132023

After a few hours of no communication, and a little hunting, this is how the team found Makai. Two problems here: One, with the propellor up and the nose down, Makai cannot transmit data, including her location, as the transmitter only works above water. And, two, well . . .

OLYMPUS DIGITAL CAMERA

The reason she was nose down in the first place is because Lake Erie is pretty shallow, and she’d taken on quite a bit of mud.

20180830_172121

Once she was all cleaned up, the team set Makai out again to complete the rest of her mission.

Once the deployment was over, the research didn’t stop there.

archive_full-liquid

Archive samples were taken so that folks back in the lab could further analyze them.

bps2

Here’s GLERL’s Observing Systems and Advanced Technology (OSAT) branch chief, Steve Ruberg (left), along with Paul Den Uyl, a researcher with CIGLR, helping Bill extract the sample filters from the cartridges.

Deunyl

The filters are being collected for analysis of DNA. The DNA will be extracted from each filter and analyzed. We’re looking at absolute quantity of known microcystin producing toxin genes in samples collected, information on bacterial community composition, and information on eukaryotic organism community composition. The samples will also analyzed through shotgun sequencing. This is where all of the genes in the sample are turned into human readable information and can be combined to make what can be thought of as an organism’s genetic instruction guide (what genes it has). This information will be very helpful in better understanding what causes the algae to be toxic (not all algae is toxic).

 


Leave a comment

Photo story: Taking a closer look at how invasive mussels are changing the Great Lakes food web

The invasion of zebra and quagga mussels in the Great Lakes is taking a toll on the ecosystem. To investigate these ecological changes, scientists from GLERL and the Cooperative Institute for Great Lakes Research (CIGLR) are doing experimentation on how quagga mussels affect the lower food web by filtering large amounts of phytoplankton out of the water.  Scientists are also investigating how mussel feeding and excretion of nutrients drive harmful algal blooms (HABs) in growth stimulation, extent, location, and toxicity.

The following experimental activities are being conducted under controlled conditions to look for changes in living and nonliving things in the water before and after quagga mussel feeding.

photo of small quagga mussels

Scientists are using quagga mussels captured from Lakes Michigan and Erie to understand how invasive mussels impact the lower food web. Prior to experimentation, the mussels are housed in cages where they graze on phytoplankton in water kept at the same temperature as the lakes. This helps acclimate them to natural lake conditions.

male and female scientists doing research at lab tables

The research team, led GLERL’s Hank Vanderploeg (front right), coordinates the different phases of the experiment. By filtering water before and after quagga mussel feeding, team members learn about the effect of these mussels on levels of phytoplankton (as measured by chlorophyll), nutrients (phosphorus and nitrogen), particulate matter, carbon, bacteria, and genetic material.

scientists pouring water into large buckets

CIGLR research associates, Glenn Carter and Paul Glyshaw, pour lake water into sample bottles for processing at different stages of the experiment.

female scientist pouring water into small container

GLERL’s, Joann Cavaletto, pours lake water from the graduated cylinder into the filter funnel. She is filtering for particulate phosphorus samples. She also measures total chlorophyll and fractionated chlorophyll based on 3 size fractions; >20 µm, between 20 µm and 2 µm, and between 2 µm and 0.7 µm.

male researcher using instrument next to computer screen

GLERL’s Dave Fanslow, operates the FluoroProbe displaying the level of pigments from different phytoplankton throughout the feeding experiment: pre-feeding of quagga mussel, progression of feeding on an hourly basis, and final measurements at the end of the experiment. The FluoroProbe measurements determine the concentration of pigments, such as chlorophyll, that quagga mussels filter out of the water throughout the experiment.

zoom in of computer screen showing lines and data

The FluoroProbe emits highly specific wavelengths of light using an LED array, which then trigger a fluorescence response in algae pigments and allow the immediate classification of green and blue green algae, cryptomonads, and diatoms.

male scientists filtering water

University of Michigan scientists, Vincent Denef (left and upper right, kneeling in bottom right) and Nikesh Dahal (standing in bottom right), filter water before and after quagga mussel feeding. They are looking at changes in the bacterial community based on the genetic composition of groups, focusing on the variability of toxic production in cyanobacteria in harmful algal blooms. Following the filtration phase of the experiment, they will conduct DNA and RNA sequencing for toxicity gene expression in the cyanobacteria.