NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


Leave a comment

A message from the director: A global community convenes on the shores of Lake Geneva, France to share lessons learned on large lakes

I had the pleasure of attending the European Large Lakes Symposium (ELLS) – International Association of Great Lakes Research (IAGLR) 2018 international conference entitled “Big Lakes, Small World” during the week of September 23-28, 2018 in Evian, France on the shores of Lake Geneva.  

IMG_6688

The ELLS-IAGLR symposium drew scientists studying large lakes systems from around the world to the shores of Lake Geneva in Evian, France.

This symposium was notable for many reasons, including being the first IAGLR meeting held outside of North America, in conjunction with the 5th European Large Lakes Symposium. I was impressed with the strong Great Lakes presence at ELLS. In addition to myself and Philip Chu representing the NOAA Great Lakes Environmental Research Laboratory (GLERL), colleagues from the Cooperative Institute for Great Lakes Research (CIGLR)—Tom Johengen, Dmitry and Raisa Beletsky—also attended. There were also a number of our Laurentian Great Lakes partners from around the basin participating in the symposium.

Like French cuisine, the conference “menu” was jam-packed with scientific gourmet entrees, which we gorged on each day from 8:45 in the morning until after the poster session concluding at 7:00 each evening.  The conference was held in the historic Palais Lumiere (below), formerly a bathhouse, circa 1902, converted into a convention and cultural center in 2006—where better to hold a conference focused on water?

IMG_6698

The symposium was held at the historic Palais Lumiere  formerly a bathhouse, circa 1902, converted into a convention and cultural center in 2006.

Presentations featured an array of topics, including the chemical, physical, and biological aspects of lakes exotic as the Amazonian floodplain lakes and Russia’s Lake Peipsi, as well as those large lakes familiar to us, such as the Great Lakes, Lake Champlain, and Lake Tahoe. Common issues of concern raised during the symposium involved the dynamic changes caused by multiple stressors, namely, increasing temperature, human populations, invasive species, and harmful algal blooms. One observation that I’m excited to report is the number of times NOAA data, products, and services were referenced in talks—a telltale sign that scientists worldwide are relying on NOAA expertise. Items ranged from a Great Lakes sticker on monitoring equipment to the use of graphics like NOAA global surface temperature maps and GLERL food web charts (twice!).  I also spotted a quote pulled from our 5-year science review and even one from our venerable Craig Stow (see image below). I counted at least 18 presentations that cited a connection to NOAA.

As a Great Lakes stakeholder attending this international symposium, I would like to convey to our Great Lakes partners from around the region that we, as a community, can take pride and satisfaction that our daily work results in global impact on large lakes—small world!

IMG_6709

Michelle Selzer, Lake Coordinator with the Michigan Office of the Great Lakes, quotes GLERL’s Craig Stow on the topic of establishing phosphorus load targets in Lake Erie: “Going forward, our willingness and ability to monitor, evaluate, and update the targets will be more important than the original targets.”

IMG_0324

Philip Chu with Ph.D candidate Theo Baracchini and Dr. Shubham Krishna of Physics and Aquatic Systems Laboratory, Swiss Federal Institute of Technology.

IMG_0321

CIGLR scientist, Dmitry Beletsky, presents at ELLS on a CIGLR/GLERL research project to advance hypoxia forecasting.

 


Leave a comment

From scuba diving to lab instruments, Dave Fanslow encourages young scientists to “stay flexible”

A man stands in a laboratory near a black, cylindrical instrument.

Dave Fanslow stands with GLERL’s fluoroprobe.

Dave Fanslow is a GLERL biologist of 25 years. He’s basically done it all, but these days he takes care of the lab’s fluoroprobe – a special instrument that measures different types of algae using light beams. Read our interview with Dave to learn more about the fluoroprobe, along with a decades-old scientific mystery that still haunts him and a fear he had to overcome on the job.

How would you describe your job?

My job is to support the principal investigators with technical know-how in the laboratory. I spend a lot of my day working on instruments right now – the flowcam and the fluoroprobe — which are both used to assess and describe HABs, or harmful algal blooms.

The fluoroprobe is a new device that uses LED lights that trigger a response from the algae, which have unique pigments in them that respond to very distinct wavelengths – so it’s able to distinguish between types of algae simply by flashing an LED light as you pull it through the water. It first came out in about 2014. We had one of the first here at GLERL.

What is the most interesting thing you’ve accomplished in your job?

The most interesting thing that I worked on was actually an unresolved question, the disappearance of the Diporeia from Lake Michigan. There was an amphipod organism called Diporeia that is still present in tiny numbers but used to be really common, and was the basis for the lower food web in Lake Michigan prior to the expansion of quagga mussels. In the mid-90’s, those organisms plummeted from numbers of around 10,000 per square meter down to practically zero in the large majority of the lake.

There was some assumption of effect by zebra mussels and quagga mussels, but we never did really figure that out. The change in the food web was occurring anyway, where quagga mussels were going to take over and dominate the system…so the exact reason for the disappearance of the Diporeia didn’t really matter in the ultimate outcome. But, it was a mystery that piqued my interest and I wish we had been able to describe it. It may have been relevant for some other instance. If it was a disease, if it was an invertebrate disease that was introduced by some other invasive species, that’s a form of microbiological pollution, and it would’ve been nice to nail that down and figure that out.

What do you feel is the most significant challenge in your field today?

The hardest part about doing what we do is the disconnect that I sometimes feel exists between policymakers and scientists. And, I know that’s something that scientists and researchers have struggled with forever, it’s not new, and it’s an ongoing problem to communicate the issues and hope that policymakers make good decisions based on good information.

Where do you find inspiration? Where do your ideas come from in your research or other endeavors in your job?

Most of my inspiration comes from encounters with the public, family and friends who are invariably enthusiastic and concerned about the Great Lakes. People in Michigan in particular, it’s part of our identities, and so that’s where I get my motivation because I know people care.

A man in a laboratory points at graphs on a computer screen.

Dave Fanslow explains some data coming from the fluoroprobe.

There’s a fun story about a fear you had to overcome to do this job. Can you tell us about that?

When I first got the job interview, I was told that they wanted me to do scuba diving to collect zebra mussels. This was at the very beginning of the zebra mussel invasion in 1992. I wasn’t super comfortable with swimming and the water, but I thought I would check it out. So I did my research, read about it, went to the pool and practiced, and said yeah I’ll take the job. Then I got trained at NOAA diving headquarters in Seattle where they have retired Navy Seals conducting the training. Then, I conducted over 500 dives over the next 6 or 7 years, mostly related to collecting zebra mussels and then also in the early stages of the Thunder Bay Marine Sanctuary, observing some of the wrecks and establishing moorings up there.

How would you advise young people interested in science as a career path, or someone interested in your particular field?

My general advice would be that they be flexible in terms of not narrowing down their discipline too much until they get out in the field and discover what the opportunities are. I know that in my career, what I have worked on, the area of technical expertise has ranged wildly over the 25 years I’ve been at GLERL. From picking bugs initially, to measuring lipid content, to measuring enzyme content in mussels and Diporeia…to now I’m working with electronic instruments. So, be flexible.

What do you wish people knew about scientists or research?

Well, one thing I think that people tend to assume about scientists is that they’re eggheads who are narrowly focused on their own work to the exclusion of the rest of the big questions about what’s going on in the environment and in society in general. So, scientists are well-rounded and multi-dimensional people too.

What do you like to do when you AREN’T sciencing?

When I’m not at the lab I have raced my bike a lot over the years, starting when I was an undergraduate. I am now kind of transitioning into middle age and doing other things like gardening and canoeing and fishing. Usually it involves being outside in the environment and making observations about the plants and the bugs and the weather and the things that are around me. We have a place on Lake Superior, and just being there and seeing the change in the weather from day to day and hour to hour is a blast; it’s one of my favorite things.


Leave a comment

Photo story: Using an AUV to track algae in Lake Erie

In late July and early September, during the peak of the 2018 harmful algal bloom in the Western Basin of Lake Erie, NOAA GLERL, NOAA National Centers for Coastal Ocean Science (NCCOS), NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML) and CIGLR researchers teamed up with a group of scientists and engineers from the Monterey Bay Research Institute (MBARI). Their mission: to test how well a third-generation environmental sample processor (3GESP), mounted inside a long-range autonomous underwater vehicle (LRAUV), can track and analyze toxic algae in the Western Basin of Lake Erie. You can read more about the purpose of this project in this great news story by MBARI’s Kim Fulton-Bennett.

Below is a photo story showing all (well, much) of the hard work that went into this test deployment.

First, the new gear had to be shipped from California to the GLERL laboratory in Ann Arbor, Michigan.

 

ESP3-b (1)

Upon arrival, Jim Birch, Director of the MBARI SURF (Sensors Underwater Research of the Future) Center, & Bill Ussler, MBARI biogeochemist, got straight to work in GLERL’s Marine Instrumentation Lab.

Image from iOS (6)

The inside of the 3G ESP has a lot of moving parts. Since this is the first time the team is testing it in freshwater, before it can go out, everything needs to be fine-tuned to work in a variety of conditions in Lake Erie (more on that later.)

So. Many. Moving. Parts.

 

Image from iOS (7)

Once everything is in working order, the 3GESP gets inserted into an LRAUV or long-range autonomous underwater vehicle (the torpedo-looking thing). This gives the 3GESP the ability to move around in the water all by itself once researchers have set parameters for it. The team has named this particular vehicle, Makai, which is Hawaiian for “toward or by the sea.” Seems appropriate! That’s Brian Kieft, MBARI software engineer, on the right. He plays a crucial role in making sure Makai does her job.

IMG-1263

All hands on deck for a few more tweaks.

testing_b

Once everything is installed tightly, helium is added into the canister to check for leaks. CIGLR engineer, Russ Miller, is working with Jim to fill it up.

Now, the team is ready to head out to Lake Erie. Here’s where things start to get exciting!

 

20180822_134836.jpg

Before the team sets Makai free to track the algal bloom in the Western Basin of Lake Erie, they must first check her ballast and trim. This is especially important for such a shallow lake (relative to where the team has been testing this technology in the deep canyons of of Monterey Bay off the coast of California.)

20180822_133254

Brian has to do all of the hard work.

Image from iOS (8)

Because, science.

Image from iOS (11)

Time to load Makai onto the NOAA vessel, which is stationed in La Salle, Michigan. Captain Kent Baker, a contractor with NOAA, is in the background operating the crane. Kent takes NOAA and CIGLR researchers and technicians out to bi-weekly sampling stations, helps deploy buoys and other instrumentation, and is at the ready for pretty much anything that needs to happen in Lake Erie.

onboat

Once she’s all settled onto the boat, the team takes Makai to the first deployment location.

Screen Shot 2018-08-23 at 12.55.24 PM

The inaugural deployment was set to match up with the bi-weekly sampling stations.

inwater

Look closely and you’ll see Makai off on her way!

Makai and the team spent nearly two weeks tracking, sampling, adjusting, and learning about using this technology to track algal toxins in Lake Erie.

Image from iOS (1) copy

The team used the images from GLERL’s Experimental Lake Erie Harmful Algal Bloom (HAB) Tracker to determine where to send Makai.

Bloom Edge

Then, they would determine how many samples to take, and program her to go to specific waypoints.

Remember when we said this Lake Erie mission will be different than the ones the team has performed in Monterey Bay? Well, here’s one example of how.

20180826_132023

After a few hours of no communication, and a little hunting, this is how the team found Makai. Two problems here: One, with the propellor up and the nose down, Makai cannot transmit data, including her location, as the transmitter only works above water. And, two, well . . .

OLYMPUS DIGITAL CAMERA

The reason she was nose down in the first place is because Lake Erie is pretty shallow, and she’d taken on quite a bit of mud.

20180830_172121

Once she was all cleaned up, the team set Makai out again to complete the rest of her mission.

Once the deployment was over, the research didn’t stop there.

archive_full-liquid

Archive samples were taken so that folks back in the lab could further analyze them.

bps2

Here’s GLERL’s Observing Systems and Advanced Technology (OSAT) branch chief, Steve Ruberg (left), along with Paul Den Uyl, a researcher with CIGLR, helping Bill extract the sample filters from the cartridges.

Deunyl

The filters are being collected for analysis of DNA. The DNA will be extracted from each filter and analyzed. We’re looking at absolute quantity of known microcystin producing toxin genes in samples collected, information on bacterial community composition, and information on eukaryotic organism community composition. The samples will also analyzed through shotgun sequencing. This is where all of the genes in the sample are turned into human readable information and can be combined to make what can be thought of as an organism’s genetic instruction guide (what genes it has). This information will be very helpful in better understanding what causes the algae to be toxic (not all algae is toxic).

 


Leave a comment

A message from the Director: Great Lakes research highlighted at the 2018 World Environmental and Water Resources Congress

cris-surbeck-sri-kamojjala-deborah-lee

(Left to right) Cristiane Surbeck, PE, D.WRE,  EWRI President (2018), Associate Professor, Department of Civil Engineering, University of Mississippi; Sridhar Kamojjala, PE, D.WRE, EWRI 2018 Conference Chair, Las Vegas Valley Water District; Deborah H. Lee, PE, D.WRE, Past President American Academy of Water Resources Engineers, NOAA GLERL Director

By Deborah H. Lee, Director, NOAA Great Lakes Environmental Research Laboratory

Recently, I had the opportunity to bring NOAA in the Great Lakes to the 2018 World Environmental and Water Resources Congress. The conference, held in Minneapolis the first week of June, brought together of several hundred civil engineers and members of the Environmental Water Resources Institute (EWRI). The Institute is the largest of the American Society of Civil Engineers’ 9 technical institutes, with about 20,000 members serving as the world’s premier community of practice for environmental and water-related issues.

As the invited keynote luncheon speaker, I presented, “Keeping the Great Lakes Great: Using Stewardship and Science to Accelerate Restoration.” In keeping with this year’s theme of “Protecting and Securing Water and the Environment for Future Generations,” my focus was NOAA’s science and restoration success stories, highlighting the many accomplishments of the Great Lakes Restoration Initiative.

I took the audience on a virtual tour of NOAA’s most exciting and innovative projects. Among those discussed were Areas of Concern, preventing and controlling invasive species, reducing nutrient runoff that contributes to harmful/ nuisance algal blooms, restoring habitat to protect native species, and generating ground-breaking science. 

I purposefully took a multimedia approach in reaching out to the EWRI community, recognizing that not all may be familiar with the Great Lakes and NOAA’s role in the region. To keep the audience engaged and entertained, several short videos were integrated throughout my talk, including the Telly award-winning “NOAA in the Great Lakes” and the short animation “How Great are the Great Lakes?” Three video clips on Great Lakes Restoration Initiative projects that highlighted the positive environmental and economic impacts of NOAA’s work were also incorporated.

Overall, I see my participation in this high profile conference as a great opportunity to raise awareness on the Great Lakes and NOAA’s mission, and was very pleased with the interest and enthusiastic response to my presentation. In looking ahead, I will be serving as EWRI’s next vice-president beginning this October and then sequentially as president-elect, president and past president in the following years. I look forward to continuing to work as steward for Great Lakes issues and advancing NOAA’s work in the region.


Leave a comment

Photo story: Taking a closer look at how invasive mussels are changing the Great Lakes food web

The invasion of zebra and quagga mussels in the Great Lakes is taking a toll on the ecosystem. To investigate these ecological changes, scientists from GLERL and the Cooperative Institute for Great Lakes Research (CIGLR) are doing experimentation on how quagga mussels affect the lower food web by filtering large amounts of phytoplankton out of the water.  Scientists are also investigating how mussel feeding and excretion of nutrients drive harmful algal blooms (HABs) in growth stimulation, extent, location, and toxicity.

The following experimental activities are being conducted under controlled conditions to look for changes in living and nonliving things in the water before and after quagga mussel feeding.

photo of small quagga mussels

Scientists are using quagga mussels captured from Lakes Michigan and Erie to understand how invasive mussels impact the lower food web. Prior to experimentation, the mussels are housed in cages where they graze on phytoplankton in water kept at the same temperature as the lakes. This helps acclimate them to natural lake conditions.

male and female scientists doing research at lab tables

The research team, led GLERL’s Hank Vanderploeg (front right), coordinates the different phases of the experiment. By filtering water before and after quagga mussel feeding, team members learn about the effect of these mussels on levels of phytoplankton (as measured by chlorophyll), nutrients (phosphorus and nitrogen), particulate matter, carbon, bacteria, and genetic material.

scientists pouring water into large buckets

CIGLR research associates, Glenn Carter and Paul Glyshaw, pour lake water into sample bottles for processing at different stages of the experiment.

female scientist pouring water into small container

GLERL’s, Joann Cavaletto, pours lake water from the graduated cylinder into the filter funnel. She is filtering for particulate phosphorus samples. She also measures total chlorophyll and fractionated chlorophyll based on 3 size fractions; >20 µm, between 20 µm and 2 µm, and between 2 µm and 0.7 µm.

male researcher using instrument next to computer screen

GLERL’s Dave Fanslow, operates the FluoroProbe displaying the level of pigments from different phytoplankton throughout the feeding experiment: pre-feeding of quagga mussel, progression of feeding on an hourly basis, and final measurements at the end of the experiment. The FluoroProbe measurements determine the concentration of pigments, such as chlorophyll, that quagga mussels filter out of the water throughout the experiment.

zoom in of computer screen showing lines and data

The FluoroProbe emits highly specific wavelengths of light using an LED array, which then trigger a fluorescence response in algae pigments and allow the immediate classification of green and blue green algae, cryptomonads, and diatoms.

male scientists filtering water

University of Michigan scientists, Vincent Denef (left and upper right, kneeling in bottom right) and Nikesh Dahal (standing in bottom right), filter water before and after quagga mussel feeding. They are looking at changes in the bacterial community based on the genetic composition of groups, focusing on the variability of toxic production in cyanobacteria in harmful algal blooms. Following the filtration phase of the experiment, they will conduct DNA and RNA sequencing for toxicity gene expression in the cyanobacteria.


Leave a comment

Andrea VanderWoude blends science and art to study the Great Lakes from the sky

A woman sits in a small airplane with headphones and a mic on, looking out the window at a bay on Lake Michigan Below.

Andrea VanderWoude on a flight over Grand Traverse Bay.

Andrea VanderWoude is a remote sensing specialist — that means she’s looking at things from far away. Whether she’s studying harmful algal blooms or rip currents, her job is to pull information out of pictures taken from airplanes or satellites. What makes her extra good at it? She’s got an artistic streak! Read on to learn more. 

How would you describe your job?

As a remote sensor, I use satellites and airborne cameras to monitor the Great Lakes – specifically harmful algal blooms, rip currents and submerged aquatic vegetation. I am an oceanographer working on the Great Lakes and most people wonder how that is possible. The lakes are so large they behave similarly to the ocean. I coordinate flights out of the Ann Arbor, Michigan airport with a contracted pilot that we work with and we put a small hyperspectral camera in the back of the airplane to take photos of the lakes.

Hyperspectral means that there are many discrete [color] bands or channels that are used (these colors are more detailed than the human eye can see). These channels can be used to map harmful algal blooms, which absorb, scatter and reflect light in a specific way. The hyperspectral camera is also able to fly underneath the clouds where passive sensors on satellites are unable to see. My day is spent programming, writing algorithms to process the images and looking at beautiful imagery. It is a wonderful blend of science and art!

What is the most interesting thing you’ve accomplished in your job?

Every year we fly over the Sleeping Bear Dunes National Lakeshore to monitor submerged aquatic vegetation and specifically for cladophora. As a northern Michigander growing up in that area, it is always amazing to see that area from the sky and to dream about hiking the Manitou Islands again. I also enjoy contributing to aiding the mapping of submerged aquatic vegetation in an area that is personally important to me.

What do you feel is the most significant challenge in your field today?

The most significant challenge I think is keeping up with the changing technology at the speed it is developing at this time. We are working on getting our new hyperspectral camera on an unmanned aerial system (UAS) for rapid response and I am really interested in using UAS’s for frequent monitoring of rip current troughs in the Great Lakes.

Where do you find inspiration? Where do your ideas come from in your research or other endeavors in your job?

I found my inspiration from growing up on the lakes and my parents always made a point of being on the water during all times of the year, either on Lake Michigan or Lake Superior. I have always felt connected to the water and jump in the lake during every month of the year, as a surfer on the Great Lakes. My ideas come from the public and what public needs could be supported. While living on the west side of Michigan, I have really seen the effect of rip currents and was recently stuck in one myself. It was a scary event and even furthered my desire to help warning and detection of rip currents.

How would you advise young women interested in science as a career path, or someone interested in your particular field?

I would advise women to get outside. When asked this question, people frequently turn towards an answer that involves STEM involvement but for me, and I think this also rings true for my Michigan Tech cohorts from undergrad, it was getting outside and learning about the natural world that sparked my interest in science. I was allowed to watch a limited amount of television as a kid and my mom would send me outside to play in the woods. I would spend my time creating forts around trees in the woods or we would go to the lake to swim for hours. This love of the outdoors continued through my undergraduate and graduate degrees with a curiosity to learn how the earth was formed, different rock types or how ocean dynamics and biology could be measured from space.

What do you like to do when you AREN’T sciencing?

I love to bake, learn about different plants, go rock hunting, trail running, rustic camping, stand up paddle boarding and I am newly returning to surfing but on the Great Lakes. I also spend an enormous amount of time with my boys on the beach, searching for cool rocks or treasures on the beach.

What do you wish people knew about scientists or research?

Many scientists also have an artistic outlet as well as their science life. It creates a life-balance. I personally find balance spending my free-time creating art from found objects on the beach, drawing, painting and baking unique pastries. Constantly a life in motion, as a pendulum between science and art.

Dr. Andrea VanderWoude is a contractor and remote sensing specialist with Cherokee Nation Businesses. She is currently working with researchers from NOAA GLERL and the Cooperative Institute for Great Lakes Research.


3 Comments

Casting a high tech sampling net to learn more about the Great Lakes ecosystem

9.JPG

Researchers at GLERL are using a new tool, a MOCNESS, to study the Great Lakes.

In the Great Lakes, communities of plants and animals vary depending on where and when you look. They are dispersed up and down and all around in the water, making it tricky to collect them for research studies. To answer questions about these organisms and how they interact in the Great Lakes ecosystem, scientists from NOAA’s Great Lakes Environmental Research Laboratory (GLERL) and CIGLR (Cooperative Institute for Great Lakes Research) are using a new high tech sampling tool called a MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System).

GLERL’s MOCNESS is the first of its kind to be used in a freshwater system. Scientists are hopeful that this technology will lead to new discoveries about the Great Lake ecosystem, such as where plankton (microscopic aquatic plants and animals) live and what causes their distributions to change over space and time. The MOCNESS will also help scientists learn more about predator-prey interactions that involve zooplankton (microscopic aquatic animals), phytoplankton (microscopic aquatic plants), and larval and juvenile fishes.

MOCNESS_FullScale

A closer look the MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System)

Keeping track of changes in plant and animal communities in the Great Lakes over time is important, especially with changes in climate, the onslaught of invasive species, and land use practices causing increased nutrient runoff into the lakes.

The MOCNESS is a big improvement over the traditional single mesh sized sample collection nets. The sampling system provided by this new tool has a series of nets of different mesh sizes to collect different sized organisms (see a few examples in the gallery below). The operator can remotely open and close these nets, much like an accordion. At the heart of the system is a set of sensors that measure depth, temperature, oxygen, light levels, and the green pigment found in algae, Chlorophyll-a. Because this data can be viewed in real time on the vessel, the operator can better determine what is going on below the water surface and choose where and when to sample different sized organisms.

Here are some of the key questions that the scientists hope to answer using this advanced technology:

  • How do plankton and larval fish respond to environmental gradients (water temperature, dissolved oxygen, UV radiation) over the course of the day, season, and across years?
  • What are the major causes for changing distributions of the animals across space and over time (long-term, seasonal, 24-hour cycle)?
  • How do these changes in affect reproduction, survival, and growth of individuals and their communities?

The MOCNESS has been tested in the waters of lakes Michigan and Huron for the past three years. The team, led by Dr. Ed Rutherford, is supporting GLERL’s long term study of the Great Lakes food webs and fisheries. “The MOCNESS will enhance the ability of our scientists to more effectively observe the dynamics of Great Lakes ecosystem over space and time—a critical research investment that will pay off for years to come,” says Rutherford.

This year, the team is actively processing samples that were collected in the spring and will continue to collect more samples through the fall. The MOCNESS will support ongoing ecological research on the Great Lakes and the results will be shared with others around the region who are working to make decisions about how to manage Great Lakes fisheries and other water resources.

This slideshow requires JavaScript.