NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


Leave a comment

The HAB season is over, but the work goes on

It’s nearly winter here in the Great Lakes—our buoys are in the warehouse, our boats are making their way onto dry land, and folks in the lab are working hard to assess observed data, experiments, and other results from this field season.

habtracker2018

This is a retrospective animation showing the predicted surface chlorophyll concentrations estimated by the Experimental Lake Erie HAB Tracker model during the 2018 season. Surface chlorophyll concentrations are an indicator of the likely presence of HABs. For more information about how the HAB Tracker forecast model is produced and can be interpreted, visit our About the HAB Tracker webpage.

The harmful algal bloom (HAB) season is also long over in the region. The final Lake Erie HAB Bulletin was sent out on Oct. 11, as the Microcystis had declined in satellite imagery and toxins decreased to low detection limits in samples. In the seasonal assessment, sent out by NOAA’s Centers for Coastal Ocean Science on Oct. 26, it was determined that the season saw a relatively mild bloom—despite its early arrival in the lake—and the bloom’s severity was significantly less than that which was predicted earlier in the season. These bulletins and outlooks are compiled using several models. Over the winter, the teams working on the models take what they learn from the previous season, and update their models for future use.

Back in the lab, the HABs team—researchers from both GLERL and the Cooperative Institute for Great Lakes Research (CIGLR)—will spend the winter analyzing data they collected through a variety of observing systems. This summer was packed with the use of new observing technologies, like hyperspectral cameras and the Environmental Sample Processor (in case you missed it, check out this fun photo story of the experimental deployment of a 3rd generation ESP). In addition, GLERL and CIGLR staff maintained a weekly sampling program program, from which scientists are analyzing and archiving samples and conducting experiments.

43447135081_b893240224_o.jpg

Aerial photograph of the harmful algal bloom in Western Basin of Lake Erie on July 2, 2018, (Photo Credit: Aerial Associates Photography, Inc. by Zachary Haslick). Pilots from Aerodata have been flying over Lake Erie this summer to map out the general scope of the algal blooms. In addition to these amazing photos, during the flyovers, additional images are taken by a hyperspectral imager (mounted on the back of the aircraft) to improve our understanding of how to map and detect HABs. The lead researcher for this project is Dr. Andrea VanderWoude, a NOAA contractor and remote sensing specialist with Cherokee Nation Businesses. For more images, check out our album on Flickr.

This lab work is super important for understanding the drivers of toxic algae in the Great Lakes. For instance, in a new study released this month, researchers looking at samples from previous years found that “ . . . the initial buildup of blooms can happen at a much higher rate and over a larger spatial extent than would otherwise be possible, due to the broad presence of viable cells in sediments throughout the lake,” according to the lead author Christine Kitchens, a research technician at CIGLR, who works here in the GLERL lab. This type of new information can be incorporated into the models used to make the annual bloom forecasts.

As you can see, our work doesn’t end when the field season is over.  In spring 2019, when the boats and buoys are back in the water and samples are being drawn from the lakes, researchers will already have a jump on their work, having spent the winter months analyzing previous years, preparing, and applying what they’ve learned to the latest version of the Experimental HAB Tracker, advanced observing technologies, and cutting-edge research on harmful algal blooms in the Great Lakes.


Leave a comment

Great Lakes in winter: Water levels and ice cover

The Great Lakes, along with their connecting waterways and watersheds, make up the largest lake system on the planet—more than 20% of the world’s surface freshwater! Water levels on the lakes change in response to a number of factors, and these changes can happen quickly. Changing water levels can have both positive and negative impacts on shipping, fisheries, tourism, and coastal infrastructure like roads, piers, and wetlands.

Currently, water levels on all of the Great Lakes are above their monthly averages, and have been developing since the spring of 2013, when a record-setting two-year rise in water levels began on the upper Great Lakes. Extreme conditions in spring of 2017 produced flooding and widespread damage at the downstream end of the basin—Lake Ontario and the St. Lawrence River. In case you missed it, check out our infographic on this flooding event.

So, what’s happening now that it’s winter?

As we entered the late fall-early winter of 2017-2018, a warm weather pattern had forecasters looking toward a fairly warm winter. However, in late December, the conditions changed and a much colder than normal weather pattern took many folks living in the Great Lakes by surprise. Much like how water levels can change quickly in the Great Lakes, so can ice cover. Due to frigid air temperatures, between December 20 and January 7, total ice cover on the lakes jumped 26.3%. Lake Erie alone jumped up to nearly 90%!

 

 

After January 7th, ice coverage dropped a bit as the air temperatures warmed, then rose again as temperatures went back down, showing again how vulnerable the lakes are to even the slightest changes. Compare where we are now to where we were 2 years ago at this time, and you’ll easily see how variable seasonal ice cover can be in the Great Lakes.

Image depicting Great Lakes total ice cover on on January 15, 2018, compared to 2017 and 2016.

What’s the outlook for ice and water levels?

Below, you’ll find what GLERL researchers expect to see for ice cover this winter, as well as the U.S. Army Corps’ water levels forecast into Spring 2018. Be sure to read further to find out more about the science that goes into these predictions!

—GLERL’s 2018 Seasonal Ice Cover Projection for the Great Lakes—

On 1/3/2018, NOAA’s Great Lakes Environmental Research Laboratory updated the maximum 2018 Great Lakes basinwide ice cover projection to 60%. The long-term average is 55%. The updated forecast reflects changes in teleconnection patterns (large air masses that determine our regional weather) since early December 2017—movement from a strong to a weak La Nina, a negative to a positive Pacific Decadal Oscillation, and a positive to a negative North Atlantic Oscillation. These patterns combine to create colder than average conditions for the Great Lakes.

—Water Levels forecast into spring 2018—

According to the most recent weekly water level update from the U.S. Army Corps, water levels for all of the Great Lakes continue to be above monthly average levels and above last year’s levels at this time. All of the lakes have declined in the last month.  Note that ice developing in the channels and on the lake surface can cause large changes in daily levels during the winter, especially for Lake St. Clair. Over the next month, Lake Superior and Lake Michigan-Huron are expected to continue their seasonal decline. Lake St.Clair, Lake Erie, Lake Ontario are expected to begin their seasonal rise.


 

More information on water levels and ice cover forecasting

How are water levels predicted in the Great Lakes?

Forecasts of Great Lakes monthly-average water levels are based on computer models, including some from NOAA GLERL, along with more than 150 years of data from past weather and water level conditions. The official 6-month forecast is produced each month through a binational partnership between the U.S. Army Corps of Engineers and Environment and Climate Change Canada.

At GLERL, research on water levels in the Great Lakes analyzes all of the components of the Great Lakes water budget. The information we gather is used to improve forecast models. The infographic below goes into more detail about the Great Lakes water budget.

Image depicting the makeup of water budgets in the Great Lakes

How does winter ice cover affect water levels?

As mentioned in the recently released Quarterly Climate Impacts and Outlook for the Great Lakes, water levels in the Great Lakes tend to decline in late fall and early winter, mainly due to reduced runoff and streamflow combined with higher over-lake evaporation caused by the temperature difference between air and water. Factors such as surface water temperatures, long stretches of cold or warm air temperatures, and winds all impact the amount of lake ice cover as well as extreme winter events, such as lake-effect snow—which we’ve already seen plenty of this winter—and vice versa. All of these factors influence winter water levels in the Great Lakes. The timing and magnitude of snow melt and spring runoff will be major players in the spring rise.

Looking for more info?

You can find more about GLERL’s water levels research, on this downloadable .pdf of the GLERL fact sheet on Great Lakes Water Levels.

View current, historical, and projected water levels on the Great Lakes Water Levels Dashboard at https://www.glerl.noaa.gov/data/dashboard/portal.html.

For more on GLERL’s research on ice in the Great Lakes, check out the Great Lakes Ice fact sheet, or check out our website at https://www.glerl.noaa.gov/data/ice/.

Want to see a really cool graphic showing the extent of the maximum ice cover on the Great Lakes for each year since 1973? You’ll find that here.

 


Leave a comment

New algorithm to map Great Lakes ice cover

Leshkvich sampling ice

GLERL researcher, George Leshkevich, drilling through the ice in Green Bay, Lake Michigan.

NOAA’s Great Lakes Environmental Research Laboratory (GLERL) is on the cutting edge of using satellite remote sensing to monitor different types of ice as well as the ice cover extent. To make this possible, an algorithm—a mathematical calculation developed at GLERL to retrieve major Great Lakes ice types from satellite synthetic aperture radar (SAR) data—has been transferred to NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS) for evaluation for operational implementation.

Once operational, the algorithm for Great Lakes ice cover mapping holds multiple applications that will advance marine resource management, lake fisheries and ecosystem studies, Great Lakes climatology, and ice cover information distribution (winter navigation).  Anticipated users of the ice mapping results include the U.S. Coast Guard (USCG), U.S. National Ice Center (NIC), and the National Weather Service (NWS).

For satellite retrieval of key parameters (translation of satellite imagery into information on ice types and extent), it is necessary to develop algorithms specific to the Great Lakes owing to several factors:

  • Ocean algorithms often do not work well in time or space on the Great Lakes
  • Ocean algorithms often are not tuned to the parameters needed by Great Lakes stakeholders (e.g. ice types)
  • Vast difference exists in resolution and spatial coverage needs
  • Physical properties of freshwater differ from those of saltwater

The relatively high spatial and temporal resolution (level of detail) of SAR measurements, with its all-weather, day/night sensing capabilities, make it well-suited to map and monitor Great Lakes ice cover for operational activities. Using GLERL and Jet Propulsion Lab’s (JPL) measured library of calibrated polarimetric C-band SAR ice backscatter signatures, an algorithm was developed to classify and map major Great Lakes ice types using satellite C-band SAR data (see graphic below, Methodology for Great Lakes Ice Classification prototype).

ICECON (ice condition index) for the Great Lakes—a risk assessment tool recently developed for the Coast Guard—incorporates several physical factors including temperature, wind speed and direction, currents, ice type, ice thickness, and snow to determine 6 categories of ice severity for icebreaking operations and ship transit.  To support the ICECON ice severity index, the SAR ice type classification algorithm was modified to output ice types or groups of ice types, such as brash ice and pancake ice to adhere to and visualize the U.S. Coast Guards 6 ICECON categories. Ranges of ice thickness were assigned to each ice type category based on published freshwater ice nomenclature and extensive field data collection. GLERL plans to perform a demonstration/evaluation of the ICECON tool for the Coast Guard this winter.

Mapping and monitoring Great Lakes ice cover advances NOAA’s goals for a Weather-Ready Nation and Resilient Coastal Communities and Economies, and Safe Navigation. Results from this project, conducted in collaboration with Son V. Nghiem (NASA/Jet Propulsion Laboratory), will be made available to the user community via the NOAA Great Lakes CoastWatch website (https://coastwatch.glerl.noaa.gov).

 

ice-types

ICECON Scale

Measuring different ice types on Green Bay used to validate the ICECON (ice type classification) Scale in a RADARSAT-2 synthetic aperture radar (SAR) scene taken on February 26, 2017.

 

Aerial photo survey improves NOAA GLERL’s Lake Erie ice model

1 Comment

Understanding the duration, extent, and movement of Great Lakes ice is important for the Great Lakes maritime industry, public safety, and the recreational economy. Lake Erie is ice-prone, with maximum cover surpassing 80% many winters.

Multiple times a day throughout winter, GLERL’s 3D ice model predicts ice thickness and concentration on the surface of Lake Erie. The output is available to the public, but the model is under development, meaning that modelers still have research to do to get it to better reflect reality.

As our scientists make adjustments to the model, they need to compare its output with actual conditions so they know that it’s getting more accurate. So, on January 13th of this year, they sent a plane with a photographer to fly the edge of the lake and take photos of the ice.

The map below shows the ice model output for that day, along with the plane’s flight path and the location of the 172 aerial photos that were captured.

NOAA GLERL Lake Erie ice model output with all aerial photo survey locations -- January 13, 2017. Credit NOAA GLERL/Kaye LaFond.

NOAA GLERL Lake Erie ice model output with all aerial photo survey locations — January 13, 2017. Map Credit NOAA GLERL/Kaye LaFond.

These photos provide a detailed look at the sometimes complex ice formations on the lake, and let our scientists know if there are places where the model is falling short.

Often, the model output can also be compared to images and surface temperature measurements taken from satellites. That information goes into the GLSEA product on our website (this is separate from the ice model). GLSEA is useful to check the ice model with. However, it’s important to get this extra information.

“These photographs not only enable us to visualize the ice field when satellite data is not available, but also allow us to recognize the spatial scale or limit below which the model has difficulty in simulating the ice structures.” says Eric Anderson, an oceanographer at GLERL and one of the modelers.

 “This is particularly evident near the Canadian coastline just east of the Detroit River mouth, where shoreline ice and detached ice floes just beyond the shoreline are not captured by the model. These floes are not only often at a smaller spatial scale than the model grid, but also the fine scale mechanical processes that affect ice concentration and thickness in this region are not accurately represented by the model physics.”

Click through the images below to see how select photos compared to the model output. To see all 172 photos, check out our album on Flickr. The photos were taken by Zachary Haslick of Aerial Associates.

 

This gallery contains 10 photos


1 Comment

Ice cover on the Great Lakes

The USCGC Mackinaw arrives in Duluth via Lake Superior. March 24, 2014

U.S. Coast Guard Cutter Mackinaw is an icebreaking vessel on the Great Lakes that assists in keeping channels and harbors open to navigation. Here, the USCGC Mackinaw arrives in Duluth via Lake Superior on March 24, 2014. Credit: NOAA
Ice formation on the Great Lakes is a clear sign of winter!

Looking back in time, the lakes were formed over several thousands of years as mile-thick layers of glacial ice advanced and retreated, scouring and sculpting the basin. The shape and drainage patterns of the basin were constantly changing from the ebb and flow of glacial meltwater and the rebound of the underlying land as the massive ice sheets retreated.

The amount and duration of ice cover varies widely from year to year. As part of our research, GLERL scientists are observing longterm changes in ice cover as a result of global warming. Studying, monitoring, and predicting ice coverage on the Great Lakes plays an important role in determining climate patterns, lake water levels, water movement patterns, water temperature, and spring algal blooms.

Doing research to improve forecasts is important for a variety of reasons.

Ice provides us a connection to the past and also serves as a measure of the harshness of current day winter weather. Understanding the major effect of ice on the Great Lakes is very important because ice cover impacts a range of benefits provided by the lakes—from hydropower generation to commercial shipping to the fishing industry. The ability to forecast and predict ice cover is also really important for recreational safety and rescue efforts, as well as for navigation, weather forecasting, adapting to lake level changes, and all sorts of ecosystem research. One great example of the importance of forecasting is illustrated by an incident that occurred in Lake Erie on a warm sunny day in February 2009 when a large ice floe broke away from the shoreline. The floating ice block stranded 134 anglers about 1,000 yards offshore and also resulted in the death of one man who fell into the water. While the ice on the western sections of the lake was nearly 2 feet thick, rising temperatures caused the ice to break up, and southerly wind gusts of 35 mph pushed the ice off shore. Having the ability to forecast how much ice cover there will be, where it may move, and what other factors like temperature, waves, or wind might play a role in what the ice is going to do, is incredibly important to a lot of users.

— GLERL’s 2017 (Dec. 2016 – March 2017) Seasonal Ice Cover Projection for the Great Lakes —

GLERL’s ice climatologist, Jia Wang, along with partners from the Cooperative Institute for Limnology and Ecosystems Research, use two different methods to predict seasonal ice cover for the Great Lakes. One, a statistical regression model, uses mathematical relationships developed from historical observations to predict seasonal ice cover maximum based on the status of several global air masses that influence basin weather. This method forecasts that the maximum ice cover extent over the entire Great Lakes basin, will be 64%. The other forecast method, a 3-dimensional mechanistic model, is based on the laws of physics that govern atmospheric and hydrodynamic (how water moves) processes to predict ice growth in response to forecast weather conditions. This method predicts a maximum ice cover of 44% for the basin this year.

As you can see, the two methods have produced different answers. However, if you look at the last chart here, you’ll see that three of the lakes show good agreement between these two model types–Lakes Michigan, Erie, and Ontario. Continued research, along with the historical data we’ve been monitoring and documenting for over 40 years, will help GLERL scientists improve ice forecasts and, ultimately, improve our ability to adapt and remain resilient through change.


More information!

Below, is the most recent Great Lakes Surface Environmental Analysis (GLSEA) analysis of the Great Lakes Total Ice Cover. GLSEA is a digital map of the Great Lakes surface water temperature (see color bar on left) and ice cover (see grayscale bar on right), which is produced daily at GLERL by Great Lakes CoastWatch. It combines lake surface temperatures that are developed from satellite images and ice cover information provided by the National Ice Center (NIC). This image is the analysis of January 10, 2017 (13%). For the most current analysis, visit https://coastwatch.glerl.noaa.gov/glsea/cur/glsea_cur.png.

GLSEA total ice cover analysis for January 10, 2017

For technical information on GLERL’s ice forecasting program, check out our website here. 

You can also find much of the information in this post, and more, on this downloadable .pdf of the GLERL fact sheet on Great Lakes ice cover.

Want to see a really cool graphic showing the extent of the maximum ice cover on the Great Lakes for each year since 1973? You’ll find that here.


Great Lakes ice cover facts since 1973

94.7% ice coverage in 1979 is the maximum on record.

9.5% ice coverage in 2002 is the lowest on record.

11.5% ice coverage in 1998, a strong El Niño year.

The extreme ice cover in 2014 (92.5%) and 2015 (88.8%) were the first consecutive high ice cover years since the late 1970’s.

14066190766_c1623828fb_o
On March 6, 2014, Great Lakes ice cover was 92.5%, putting winter 2014 into 2nd place in the record books for maximum ice cover. Satellite photo credit: NOAA Great Lakes CoastWatch and NASA.