NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


Leave a comment

UPDATE: GLERL Releases Drifter Buoys into Lake Erie

Update 08/09/2016: The buoys have drifted ashore and are being collected! The map below shows their full journey.

drifters map 2.1-01.png

This map shows the journey of the drifters from July 5, 2016 to August 5, 2016. Created by Kaye LaFond for NOAA GLERL. Click image to enlarge.

 

Original post 07/13/2016:

Last week, GLERL scientists released two mobile buoys with GPS tracking capabilities, known as ‘Lagrangian drifters’, into Lake Erie. We are now watching the buoys move around the lake with interest, and not just because it’s fun. The drifters help us test the accuracy of our Lake Erie hydrodynamics model, known as the Lake Erie Operational Forecasting System (LEOFS).

drifters map 2 [Converted]-01.png

This map shows the progress of the drifters as of July 13, 2016 08:19:00. Created by Kaye LaFond for NOAA GLERL. Click image to enlarge.

LEOFS is driven by meteorological data from a network of buoys, airports, coastal land stations, and weather forecasts which provide air temperatures, dew points, winds, and cloud cover.  The mathematical model then predicts water levels, temperatures, and currents (see below).

ewndcur_latest

An example of outputs from the Lake Erie Operational Forecast System (LEOFS)

 

We use these modeled currents to predict the path that something like, say, an algae bloom would take around the lake. In fact, this is the basis of our HAB tracker tool.

The strength of LEOFS is in how well the modeled currents match reality.  While there are a number of stationary buoys in Lake Erie, none provide realtime current measurements.  The drifters allow us to see how close we are getting to predicting the actual path an object would take.

Researchers will compare the actual paths of the drifters to the paths predicted by our model. This is a process known pretty universally as ‘in-situ validation’ (in-situ means “in place”). Comparing our models to reality helps us to continually improve them.

For more information and forecasts, see our Great Lakes Coastal Forecasting homepage.

For an up-to-date kmz file of the drifters (that opens as an animation in Google Earth), click here.

 

 


1 Comment

Working to understand the drivers of bloom toxicity in Lake Okeechobee

IMG_0207Last week, GLERL scientist Tim Davis spent time down in Florida sampling and conducting field experiments in Lake Okeechobee and the St. Lucie River, two major freshwater ecosystems in Florida that are currently under a state of emergency due to the presence of harmful algal blooms.

IMG_0197The sampling and research we’re doing in Lake Okeechobeeo helps us get a better understanding of the environmental drivers behind changes in bloom toxicity—a main focus of the research we’re doing within our HAB research program. The work we’re doing throughout western Lake Erie, has led the creation of an experimental Lake Erie HAB Tracker and Lake Erie Experimental HAB forecast, which are used by water treatment managers and others to make important decisions about water quality in the region. 

This collaboration with CILER (Cooperative Institute for Limnology and Ecosystems Research), Stony Brook University and USGS, will prove beneficial to the continued research and better understanding of ecosystem health effects related to human-influenced water quality degradation, not only in the Great Lakes, but throughout all large freshwater systems. By comparing the genetic characteristics of the blooms in Florida to those that occur in Lake Erie, we hope to not only better understand toxicity, but also whether or not we can apply the same techniques of forecasting and monitoring in Lake Erie to other large bodies of freshwater around the world.

GLERL will continue to receive bloom samples for genetic testing of the Lake Okeechobee HAB for the rest of the season.  

Note: For specific information about the bloom in Florida, please visit 
the responding agencies' website: 

For sampling information please visit Florida Department of
Environmental Protection: 
https://depnewsroom.wordpress.com/algal-bloom-monitoring-an
d-response/ 

For health information please visit Florida Department of
Health:
http://www.floridahealth.gov/environmental-health/aquatic-toxins/index.html

For information on water management in the region please
visit South Florida Water Management District:
http://www.sfwmd.gov/portal/page/portal/sfwmdmain/home%20pa
ge 

This slideshow requires JavaScript.


Leave a comment

2016 Lake Erie HABs Forecast Has Arrived

Earlier today, NOAA and partners released their forecast of Harmful Algal Blooms (HABs) for the summer of 2016. The official predicted bloom severity came in at a 5.5, far milder than last year’s 10.5, although still significant.

This spring has been relatively dry, sporting a 4 inch rain deficit since May 2016, and flows in the Maumee River are down. Consequently, the amount of total bioavailable phosphorus flowing into Lake Erie that could feed blooms is lower than the past three years.

This doesn’t mean the source of the nutrients – mainly agricultural runoff – has been addressed. Heavy, intense rainfall in the future could pick up excess nutrients and create severe blooms again.

There is a high uncertainty associated with this summer’s forecast (ranging from 3 to 7) because we don’t know for sure what the overwinter effect from last summer’s bloom is going to be — phosphorous and algae material could remain in the water and boost this year’s bloom.

p6fat-0716_o

2016 HABs Forecast

NOAA GLERL and partners will be keeping an eye on Lake Erie all summer, and in September, we’ll be sending our Environmental Sample Processor (ESPniagara) on its first mission to monitor algal toxins in real-time near the Toledo water intake.

For more information, check out our new and improved HABs and Hypoxia homepage.