NOAA Great Lakes Environmental Research Laboratory

The latest news and information about NOAA research in and around the Great Lakes


1 Comment

Women’s History Month Special: Retiring GLERL Physical Scientist Anne Clites gives us her parting wisdom

A woman with brown hair and a black vest on smiles for the camera.

Anne Clites, GLERL physical scientist, is retiring at the end of March after 35 years with the lab.

At the end of March, Anne Clites, GLERL physical scientist, will retire after 35 years with the lab. Her work can be somewhat behind-the-scenes (things like compiling, archiving and distributing data), but it’s just as essential as what our principal investigators do. She brings continuity, organization, and accountability. She’s contributed enormously to the science we do here, and we thought we’d ask her to share a bit of her wisdom and experience before she goes.

How would you describe your job? How long have you been doing it?

“I started working at GLERL in 1982. As a physical scientist, I’ve worked with a number of project scientists over the years, helping gather data, improve computer models, publish results, and make our products available and understandable to others. Most of the work has involved improving our understanding of the water budget, seasonal prediction of water levels and ice cover.”

Has your job changed over time?

“Technology has changed! When I started working at GLERL, I had to walk to another building to a card punch machine to run my programs. It was several years before we all had PCs on our desks. I was in on the effort to develop our first website and that has certainly changed the way we communicate and distribute data.”

What is the most interesting thing you’ve accomplished in your job? What has been your favorite part?

“I’m proud of my contributions to a lot of journal articles and data products over the years. I know that I’ve helped improve our website to make our data more discoverable. I’ve often felt like a translator between scientists and the public, and tried hard to build a bridge there when it was needed. I really love NOAA’s mission: ‘to understand and predict changes in climate, weather, oceans, and coasts’ and to share that knowledge with others. It’s important work and I’m proud to have a part in it.”

What advice would you give to young people who are beginning a career in science?

“Everyone should learn to write well! It is so important to be able to communicate what we learn – both with other scientists, and with the public. A good understanding of using data to tell a story won’t hurt, either.”

It’s Women’s History Month, and we’d love to hear some of your thoughts about being a woman in STEM. How do you think you’ve experienced your career differently than men you’ve worked with?

“I think family responsibilities are shared more now than they were 30 years ago, but I think women still do more of the mental juggling, although every family is different. One thing I truly valued about my job is that I had the opportunity to work part time while my kids were little. I was never treated as if my contributions were less important just because I worked part-time. That meant a lot to me. It also allowed me to be a Girl Scout leader, an active parent-teacher organization member and sports parent.”

What do you think the research/academic community can do to attract and retain women?

“Keep offering flexible work schedules and part-time work for women who want to juggle job and family.”

What do you like to do when you AREN’T sciencing?

“Cook, read, get outside, garden, sing, peace and justice work, board games, do anything with my kids and grandkids.”

What do you wish people knew about scientists or research?

“Too many people think of scientific research as something that will never touch their lives, and they are so wrong about that! We need facts to solve these problems! The Great Lakes hold 20% of the world’s available fresh surface water. That’s way too important to ignore!”


Leave a comment

Scientists are people with questions: a conversation with GLERL limnologist Craig Stow

A man in a baseball cap stands in the GLERL lobby in front of some 3-d bathymetry maps of the Great Lakes

Craig Stow, a GLERL limnologist, says scientists are “people with questions.”

Craig Stow is a Limnologist (that means somebody who studies freshwater systems) at NOAA GLERL. He models nutrients cycling through (Great) lakes. His research is super applicable; notably, he’s part of the team trying to deal with nutrient loads in Lake Erie – he wrestles with the question of how much phosphorous is coming into the lake, and how it gets there.

Read on to see how Craig deals with mental blocks, why science isn’t like the movies, and what he thinks people get wrong about researchers.

How would you describe your job?

“I try to learn about things so that I can usefully apply any enhanced insight I might gain. Currently I’m trying to better understand the separate influences of tributary flow and tributary nutrient concentration on nutrient loads to Lake Erie. We have set new phosphorus load targets and those can be achieved by managing tributary flow, tributary nutrient concentration, or both, but the effects in the lake will differ in ways that are not obvious.”

What is the most interesting thing you’ve accomplished?

“The most interesting things are those that are counter to what you expect a priori. Though it can take a while to come to grips with the realization that you didn’t know what you were talking about at the outset. When I was a master’s student my adviser told me it was good to be humbled; I didn’t expect it to happen so frequently. Astounding revelations are more prevalent in movies than real life — at least in my office. Most of what I accomplish involves incremental insights that nudge the field along.”

Where do you find inspiration? Where do your ideas come from in your research or other endeavors in your job?

“Read a lot, talk to colleagues, recognize unresolved tensions, think really hard, then do something else. Good insights often occur when your mind relaxes following a period of intense concentration.”

How would you advise high school students interested in science as a career path, or someone interested in your particular field?

“Learn to write well. Publishing requires recognizing a good story and telling it effectively. If you can’t express your thoughts clearly and succinctly you will struggle in this field.”

What do you like to do when you AREN’T sciencing?

“I like to play and listen to music, work outdoors, be at home with the family, and grill. And think about fishing. I used to actually go fishing, now I just think about it. I’m usually more successful and don’t jab the hook in my fingers as often.”

What do you wish people knew about scientists or research?

“Science is the collective process of searching for the truth. It occurs by assembling and synthesizing information to generate ideas, and sharing those ideas so that others can corroborate, contradict, or modify them. The peer-reviewed literature is the primary venue for that process; that’s why publication is important. Scientists are the individuals who participate in this process. Most are intrinsically curious, many are really smart, some live an illusion of objectivity, and there are a few charlatans. The successful ones are more tenacious than anything else. There’s a tendency to view scientists as people with answers, mostly they’re people with questions.”


Leave a comment

Great Lakes in winter: Water levels and ice cover

The Great Lakes, along with their connecting waterways and watersheds, make up the largest lake system on the planet—more than 20% of the world’s surface freshwater! Water levels on the lakes change in response to a number of factors, and these changes can happen quickly. Changing water levels can have both positive and negative impacts on shipping, fisheries, tourism, and coastal infrastructure like roads, piers, and wetlands.

Currently, water levels on all of the Great Lakes are above their monthly averages, and have been developing since the spring of 2013, when a record-setting two-year rise in water levels began on the upper Great Lakes. Extreme conditions in spring of 2017 produced flooding and widespread damage at the downstream end of the basin—Lake Ontario and the St. Lawrence River. In case you missed it, check out our infographic on this flooding event.

So, what’s happening now that it’s winter?

As we entered the late fall-early winter of 2017-2018, a warm weather pattern had forecasters looking toward a fairly warm winter. However, in late December, the conditions changed and a much colder than normal weather pattern took many folks living in the Great Lakes by surprise. Much like how water levels can change quickly in the Great Lakes, so can ice cover. Due to frigid air temperatures, between December 20 and January 7, total ice cover on the lakes jumped 26.3%. Lake Erie alone jumped up to nearly 90%!

 

 

After January 7th, ice coverage dropped a bit as the air temperatures warmed, then rose again as temperatures went back down, showing again how vulnerable the lakes are to even the slightest changes. Compare where we are now to where we were 2 years ago at this time, and you’ll easily see how variable seasonal ice cover can be in the Great Lakes.

Image depicting Great Lakes total ice cover on on January 15, 2018, compared to 2017 and 2016.

What’s the outlook for ice and water levels?

Below, you’ll find what GLERL researchers expect to see for ice cover this winter, as well as the U.S. Army Corps’ water levels forecast into Spring 2018. Be sure to read further to find out more about the science that goes into these predictions!

—GLERL’s 2018 Seasonal Ice Cover Projection for the Great Lakes—

On 1/3/2018, NOAA’s Great Lakes Environmental Research Laboratory updated the maximum 2018 Great Lakes basinwide ice cover projection to 60%. The long-term average is 55%. The updated forecast reflects changes in teleconnection patterns (large air masses that determine our regional weather) since early December 2017—movement from a strong to a weak La Nina, a negative to a positive Pacific Decadal Oscillation, and a positive to a negative North Atlantic Oscillation. These patterns combine to create colder than average conditions for the Great Lakes.

—Water Levels forecast into spring 2018—

According to the most recent weekly water level update from the U.S. Army Corps, water levels for all of the Great Lakes continue to be above monthly average levels and above last year’s levels at this time. All of the lakes have declined in the last month.  Note that ice developing in the channels and on the lake surface can cause large changes in daily levels during the winter, especially for Lake St. Clair. Over the next month, Lake Superior and Lake Michigan-Huron are expected to continue their seasonal decline. Lake St.Clair, Lake Erie, Lake Ontario are expected to begin their seasonal rise.


 

More information on water levels and ice cover forecasting

How are water levels predicted in the Great Lakes?

Forecasts of Great Lakes monthly-average water levels are based on computer models, including some from NOAA GLERL, along with more than 150 years of data from past weather and water level conditions. The official 6-month forecast is produced each month through a binational partnership between the U.S. Army Corps of Engineers and Environment and Climate Change Canada.

At GLERL, research on water levels in the Great Lakes analyzes all of the components of the Great Lakes water budget. The information we gather is used to improve forecast models. The infographic below goes into more detail about the Great Lakes water budget.

Image depicting the makeup of water budgets in the Great Lakes

How does winter ice cover affect water levels?

As mentioned in the recently released Quarterly Climate Impacts and Outlook for the Great Lakes, water levels in the Great Lakes tend to decline in late fall and early winter, mainly due to reduced runoff and streamflow combined with higher over-lake evaporation caused by the temperature difference between air and water. Factors such as surface water temperatures, long stretches of cold or warm air temperatures, and winds all impact the amount of lake ice cover as well as extreme winter events, such as lake-effect snow—which we’ve already seen plenty of this winter—and vice versa. All of these factors influence winter water levels in the Great Lakes. The timing and magnitude of snow melt and spring runoff will be major players in the spring rise.

Looking for more info?

You can find more about GLERL’s water levels research, on this downloadable .pdf of the GLERL fact sheet on Great Lakes Water Levels.

View current, historical, and projected water levels on the Great Lakes Water Levels Dashboard at https://www.glerl.noaa.gov/data/dashboard/portal.html.

For more on GLERL’s research on ice in the Great Lakes, check out the Great Lakes Ice fact sheet, or check out our website at https://www.glerl.noaa.gov/data/ice/.

Want to see a really cool graphic showing the extent of the maximum ice cover on the Great Lakes for each year since 1973? You’ll find that here.

 


1 Comment

Sounds of the storm and coral reef recovery following Hurricanes Irma and Maria in Puerto Rico

By Dr. Doran Mason (NOAA Great Lakes Environmental Research Laboratory) and Felix Martinez (National Centers for Coastal Ocean Science)

2017-10-23-PHOTO-50

University of Puerto Rico grad students servicing a hydrophone at the Weinberg site at La Parguera Natural Reserve on the southwest coast of Puerto Rico.  Photo Credit:  Rebecca Becicka, Ph.D. student at University of Puerto Rico, Mayagüez

Researchers at NOAA’s Great Lakes Environmental Research Laboratory (GLERL) are exploring the use of sound to monitor and assess the health of coastal ecosystems, most recently focusing on the soundscape created by Hurricanes Irma and Maria in Puerto Rico. In collaboration with the University of Puerto Rico at Mayagüez, Purdue University (a partner university in the Cooperative Institute for Great Lakes Research consortium), and the National Centers for Coastal Science (NCCOS), GLERL has launched a pilot study on developing the long-term use of soundscape. To implement this new approach to monitoring, hydrophones, an instrument in measuring sound, are used to track the response of ecosystems to natural (e.g., tropical storms) and human-induced (e.g., stressors such as excess nutrients, sedimentation, fishing pressure, climate change) disturbances.

In this pilot project, hydrophones have been in place for six months at three sites (see below for Google Earth Map of Magueyes Island, La Parguera, Puerto Rico) at La Parguera Natural Reserve on the southwest coast of Puerto Rico prior to and during the two category 4 hurricanes that pummeled the island. Miraculously, the recorders and data survived the storms and were recovered, providing us with a unique opportunity to listen to the hurricanes and to evaluate how quickly reefs recover from a natural disaster.  

What is a soundscape?  Soundscapes are created by the aggregation of sounds produced by living organisms (invertebrates, fish, marine mammals), non-biological natural sounds (waves, rain, movement of the earth), and sounds produced by humans (boats, coastal roads). Changes in the biological portion of soundscape can provide us with the quantitative data to assess the health of the ecosystem in response to natural and human-induced disturbance.  Thus, our overall goal is to develop quantitative indices of coastal ecosystem health, based on the soundscape to assess the state of the environment, and to understand and predict changes, with application towards ecosystem restoration and conservation efforts. The utility of this approach is the use of a low-cost, remote autonomous technology that holds potential in expanding NOAA’s long-term observational capacity to monitor and assess coastal habitats.

Why GLERL?  As part of a long history of monitoring and research in the Great Lakes, GLERL scientists have cultivated a unique expertise in the development of autonomous remote sensing technology. In the last two decades, Purdue University (a CIGLR partner) has been one of the leaders in the development of terrestrial soundscapes as a critical tool to monitor ecosystem change. More recently, interest has grown in expanding this approach into the aquatic realm.  Building on our relationship with Purdue, GLERL and partners are well positioned to advance use of soundscape ecology to meet NOAA’s mission to protect, restore, and manage the use of coastal and ocean resources. In addition to the pilot study, GLERL is partnering with NCCOS to reach out to other NOAA Line Office programs in efforts to formalize the use of soundscapes within NOAA as a scientific program.  For example, efforts are underway to plan an international workshop to establish the foundational principles and identify research and technology gaps for the use of soundscape ecology.

Why Puerto Rico? Original support for this pilot study came from a congressional allocation for enhancing relationships with the cooperative institutes for the benefit of coral reef restoration and conservation. Given the scientific knowledge accrued from NCCOS’ prior investments in La Parguera, GLERL and its NCCOS partner recognized that Puerto Rico would be a prime location to test and develop the use of soundscapes technology to track and quantify the health of coastal ecosystems.

Google Earth Map-MagueyesIsland-PR

Google Earth Map of Magueyes Island, La Parguera, Puerto Rico showing coral reef locations where the hydrophones were deployed at different depths: Weinberg (shelf-edge) – 75′; Media Luna (mid-shelf) – 45′; Pelotas (inner-shelf) – 35′.  Provided by: Prof. Richard Appeldoorn, University of Puerto Rico, Mayagüez

IMG_3548

Colleagues from Purdue University and University of Puerto Rico deploy Media Luna reef site hydrophone for the first time.  Photo credit: Steve Ruberg, NOAA GLERL

IMG_3539

View of La Parguera from Media Luna reef site. Photo credit: Steve Ruberg, NOAA GLERL


Leave a comment

New algorithm to map Great Lakes ice cover

Leshkvich sampling ice

GLERL researcher, George Leshkevich, drilling through the ice in Green Bay, Lake Michigan.

NOAA’s Great Lakes Environmental Research Laboratory (GLERL) is on the cutting edge of using satellite remote sensing to monitor different types of ice as well as the ice cover extent. To make this possible, an algorithm—a mathematical calculation developed at GLERL to retrieve major Great Lakes ice types from satellite synthetic aperture radar (SAR) data—has been transferred to NOAA’s National Environmental Satellite, Data, and Information Service (NESDIS) for evaluation for operational implementation.

Once operational, the algorithm for Great Lakes ice cover mapping holds multiple applications that will advance marine resource management, lake fisheries and ecosystem studies, Great Lakes climatology, and ice cover information distribution (winter navigation).  Anticipated users of the ice mapping results include the U.S. Coast Guard (USCG), U.S. National Ice Center (NIC), and the National Weather Service (NWS).

For satellite retrieval of key parameters (translation of satellite imagery into information on ice types and extent), it is necessary to develop algorithms specific to the Great Lakes owing to several factors:

  • Ocean algorithms often do not work well in time or space on the Great Lakes
  • Ocean algorithms often are not tuned to the parameters needed by Great Lakes stakeholders (e.g. ice types)
  • Vast difference exists in resolution and spatial coverage needs
  • Physical properties of freshwater differ from those of saltwater

The relatively high spatial and temporal resolution (level of detail) of SAR measurements, with its all-weather, day/night sensing capabilities, make it well-suited to map and monitor Great Lakes ice cover for operational activities. Using GLERL and Jet Propulsion Lab’s (JPL) measured library of calibrated polarimetric C-band SAR ice backscatter signatures, an algorithm was developed to classify and map major Great Lakes ice types using satellite C-band SAR data (see graphic below, Methodology for Great Lakes Ice Classification prototype).

ICECON (ice condition index) for the Great Lakes—a risk assessment tool recently developed for the Coast Guard—incorporates several physical factors including temperature, wind speed and direction, currents, ice type, ice thickness, and snow to determine 6 categories of ice severity for icebreaking operations and ship transit.  To support the ICECON ice severity index, the SAR ice type classification algorithm was modified to output ice types or groups of ice types, such as brash ice and pancake ice to adhere to and visualize the U.S. Coast Guards 6 ICECON categories. Ranges of ice thickness were assigned to each ice type category based on published freshwater ice nomenclature and extensive field data collection. GLERL plans to perform a demonstration/evaluation of the ICECON tool for the Coast Guard this winter.

Mapping and monitoring Great Lakes ice cover advances NOAA’s goals for a Weather-Ready Nation and Resilient Coastal Communities and Economies, and Safe Navigation. Results from this project, conducted in collaboration with Son V. Nghiem (NASA/Jet Propulsion Laboratory), will be made available to the user community via the NOAA Great Lakes CoastWatch website (https://coastwatch.glerl.noaa.gov).

 

ice-types

ICECON Scale

Measuring different ice types on Green Bay used to validate the ICECON (ice type classification) Scale in a RADARSAT-2 synthetic aperture radar (SAR) scene taken on February 26, 2017.

 


Leave a comment

A message from the Director: Integrating science-based adaptive management into GLERL research

One thing that can be said with certainty about the Great Lakes ecosystem, is that it is in a constant state of change. The primary question for NOAA’s Great Lakes Environmental Research Laboratory (GLERL) is, how can we most effectively research and manage the lakes given their changing biological, physical, and chemical conditions? The answer, in part, is to build our capabilities in taking an integrated, science-based adaptive management approach in the conduct of research and ecosystem management.

Adaptive management—a concept that has been evolving in the Great Lakes region since enactment of the 1972 Great Lakes Water Quality Agreement (GLWQA)—integrates well-defined feedback loops in the process of doing science-based research and management, thus providing a way to respond to ecosystem changes. The ultimate goal of using an adaptive approach is to continually evolve the research and management of the Great Lakes ecosystem while accounting for uncertainty in the conduct of science. Though it could be said that adaptive management is a common sense, verify as you go approach, in order to render a significant impact in the mitigation of problems/stressors threatening the Great Lakes, an integrated, science-based, adaptive management approach must be purposefully executed and institutionalized on a long-term basis with reliable funding.

So what do we really mean by taking a science-based, adaptive management approach? And how are we doing it?  The International Joint Commission (IJC), established by the United States and Canada to prevent and resolve disputes about the use and quality of the Great Lakes boundary waters, has played an important role in shaping adaptive management as an approach to protect and restore the Great Lakes. Through the lens of the IJC, “Adaptive management is a planning process that provides a structured, iterative approach for improving actions through long-term monitoring, modelling, and assessment. Adaptive management allows decisions to be reviewed, adjusted, and revised as new information and knowledge becomes available, and/or as conditions change.”  (Upper Great Lakes Lakes Study, IJC 2012).  There is growing awareness that we need to be adaptive in our approach given that managed resources will always change as a result of human intervention, that surprises are inevitable, and that new uncertainties will emerge. Adaptive management should not be considered a ‘trial and error’ process but rather one that is built on “learning while doing.” (Williams et al., 2007).

At GLERL, we are striving to integrate adaptive management in a deliberate way in the design, conduct, and overall management of our research projects. On the most basic level, adaptive management provides a framework upon which research is structured, using measurable goals and objectives to assess and evaluate outcomes with each cycle of research. The role that adaptive management is expected to play in GLERL research is delineated in GLERL’s 2016 Strategic Plan (pp. 17-23). This approach is exemplified by research on the causes and impacts of harmful algal blooms (HABs) and hypoxia (a condition when oxygen levels within the water become extremely low) in western Lake Erie as conducted by GLERL, in conjunction with Cooperative Institute for Great Lakes Research (CIGLR, formerly CILER). Further information on GLERL’s HABs and hypoxia research is available on GLERL’s webpage, Great Lakes HABs and Hypoxia.

We view the process of adaptive management guiding Great Lakes scientific research and ecosystem management as a coupled feedback loop (see below graphic, Adaptive Integrated Research Framework) driven by water quality/quantity problems, stakeholder engagement, and existing policy (e.g., NOAA/GLERL mission and vision, 2012 amended GLWQA). As an example, it has been well established that HABs and hypoxia threaten the Great Lakes ecosystem and ecological services provided by the lakes as well as pose human health risks and socio-economic impacts. Importantly, stakeholder engagement continues to play a key role in articulating these problems and guiding priorities in the conduct of HABs/hypoxia research, such as the following:

  • Reducing nutrient loading of phosphorus and nitrogen.
  • Understanding impacts of HABs on food web structure and potential impacts on fisheries, increased water treatment costs, lost opportunity costs for recreation, and shoreline property values.
  • Understanding toxicity level impacts on human health.

The next step in an adaptive management approach is formulating research goals, objectives and questions—based on identified priorities—that are measurable and can result, in part, from stakeholder engagement. A measurable goal established for HABs research and management is a 40 percent target reduction in spring loads of phosphorus to minimize the size and impact HABs in western Lake Erie. Fundamental to an adaptive management approach is the measurement of progress toward reaching the research and management goals and making adjustments accordingly.

Another important driver in the adaptive management cycle is feedback based on the assessment and evaluation of research and management results and other outcomes. The transfer of results/outcomes to the scientists, managers, as well as stakeholders, provides an opportunity for the adaptive approach to refine and improve the next round of HABs research. For example, recent HABs research has pointed to nitrogen as an important driver of bloom toxicity; these findings have played an important role in shaping GLERL’s future research agenda.

In our ongoing commitment to serve the Great Lakes community through our research, GLERL’s efforts can only be strengthened through adaptive management by ensuring that stakeholders—such as water intake managers, fisheries managers, land use managers, public health agencies, environmental groups, and the general public—are given the products and tools needed to mitigate the sources and impacts related to HABs and hypoxia (see story on hypoxia stakeholder workshop). This approach holds great promise in improving the ecological as well as economic health of the Great Lakes region.

Deborah H. Lee, PE, PH, D.WRE
Director, NOAA GLERL

Adaptive Integrated research framework at GLERL

This diagram was developed to depict the adaptive, integrated approach that characterizes GLERL’s scientific research. The iterative, longterm, systematic process of using an adaptive integrated research framework provides an opportunity to refine research and ecosystem management approaches. The cycle of an adaptive integrated research framework used in conjunction with the best available science, provides iterative feedback loops incorporated as part of GLERL’s research methodology. The coupled feedback loops depicted above show the interrelationship between research management and ecosystem management, both driven by assessment and evaluation as well as stakeholder input.


Leave a comment

“Just Because the Blooms in Lake Erie Slow Down, Doesn’t Mean We Do”

NOAA GLERL harmful algal blooms research program featured on Detroit Public Television

As part of a series on The Blue Economy of the Great Lakes, NOAA’s Great Lakes Environmental Research Laboratory (GLERL) is featured in a short video, produced by Detroit Public Television (DPTV) and published on the DPTV website. The video, which features GLERL and its partners from the Cooperative Institute for Great Lakes Research (CIGLR, known formerly as CILER), describes the advanced technology GLERL uses to monitor, track, predict, and understand harmful algal blooms (HABs) in the Great Lakes. More specifically, the video focuses on efforts in Lake Erie, where over 400,000 people were affected by a 3-day shutdown of the Toledo drinking water treatment facility in 2014. Since then, GLERL and CIGLR have enhanced their HABs research program—much of which is made possible by funding from the Great Lakes Restoration Initiative, or GLRI—to include cutting-edge technologies such as the hyperspectral sensors and an Environmental Sample Processor (ESP), as well as experimental forecasting tools like the Lake Erie HAB Tracker.

In addition to online coverage, the video will be broadcast via DPTV at a future time, yet to be determined.

View the video above, or visit http://bit.ly/2pK2g0J.